
Industrial-Strength Controlled Concurrency
Testing for C# Programs with Coyote

Pantazis Deligiannis1(�) , Aditya Senthilnathan2, Fahad Nayyar3?,
Chris Lovett1, and Akash Lal2

1 Microsoft Research, Redmond, WA, USA
{pdeligia,clovett}@microsoft.com

2 Microsoft Research, Bengaluru, India
{t-adityase,akashl}@microsoft.com

3 Apple UK Ltd., London, UK
f_nayyar@apple.com

Abstract. This paper describes the design and implementation of the
open-source tool Coyote for testing concurrent programs written in the
C# language. Coyote provides algorithmic capabilities to explore the
state-space of interleavings of a concurrent program, with deterministic
repro for any bug that it finds. Coyote encapsulates multiple ideas from
the research community to offer state-of-the-art testing for C# programs,
as well as an efficiently engineered implementation that has been shown
robust enough to support industrial use.

1 Introduction

Testing programs with concurrency is a challenging problem for developers. Con-
currency introduces non-determinism in the program, making bugs hard to find,
re-produce and debug [25,43]. In fact, concurrency is one of the main reasons
behind flaky tests [34] (tests that may pass or fail without any code changes),
causing a significant engineering burden on development teams [31]. As concur-
rency, in the form of multi-threading or distributed systems, is fundamental to
how we build modern systems, solutions are required to help developers test
their concurrent code for correctness.

There are two important challenges with testing concurrent programs. First
is the problem of reproducibility or control. By default, a programmer does not
have control over how concurrent workers interleave during execution.4 The only
programmatic control is through enforcing synchronization, but that is usually
not enough to guarantee that certain interleavings can be reproduced. The sec-
ond challenge is the state-space explosion problem. A concurrent program, even
with a fixed test input, can have many possible behaviors; in fact, there can be
exponentially many interleavings in terms of the length of the execution.
? Work was done while the author was at Microsoft Research.
4 Concurrency comes in many forms: threads, tasks, actors, processes, etc. We use the
term workers to abstractly refer to any of these forms.

c© The Author(s) 2023

https://doi.org/10.1007/978-3-031-30820-8_26
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 433–452, 2023.

https://eapls.org/pages/artifact_badges/
https://eapls.org/pages/artifact_badges/
http://orcid.org/0000-0001-7582-4520
https://doi.org/10.1007/978-3-031-30820-8_26
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_26&domain=pdf

One line of work that attempts to solve these challenges is controlled con-
currency testing (CCT) [53]. This approach proposes taking over the scheduling
of concurrent workers and then using algorithms, either randomized or system-
atic, for searching over the space of interleavings. The former (i.e., taking over
scheduling) is typically an engineering challenge. It requires understanding the
language runtime and building solutions that are efficient, robust and usable.
The latter (i.e., searching over the space of interleavings) requires algorithmic
and empirical insights on finding bugs, and it has been the main topic of many re-
search publications (e.g., [43,42,55,32,54,10,40,13,53,16,41,48,19,56]). Both these
aspects are essential for industrial adoption.

In this paper, we describe the design and implementation of the open-source
tool Coyote [7] for controlled concurrency testing of C# programs. Coyote
aims to make testing of concurrent programs as easy and natural as testing of
sequential programs.

Usage Coyote was released on GitHub on March 2020, and since then its
release binaries have been downloaded from nuget.org over a million times.
The project has extensive documentation as well as tutorials for developers [8].
Coyote has been used internally in Microsoft for testing multiple differ-
ent services of the Azure cloud infrastructure. Through the use of lightweight
telemetry [9], we have consistently seen over three million seconds of testing each
month for the last 12 months, peaking at roughly 13 million seconds in a month.
Coyote testing has been invoked 71K times per month on average, reporting
around 10K test failures per month on average.

Coyote is also a testing backend for the P language [15], currently used in
Amazon for the analysis of several core distributed systems [5]. A P program is
compiled to a C# program and fed to Coyote for testing.

Contributions This paper covers the design decisions that were necessary for
supporting industrial usage. It is unreasonable to support all programs in a
language as broad as C#, so the focus of Coyote has been on the task asyn-
chronous programming (TAP) model [38] that is the recommended and most
common way of expressing concurrency and asynchrony in C#. Coyote encap-
sulates multiple state-space exploration techniques from the literature in order
to provide state-of-the-art testing to its users. Coyote is also designed to be
extensible, both in supporting other programming models (it already supports
an actor programming model [4,12] and support for threads is straightforward),
as well as other exploration strategies. This paper also describes a novel search
technique specifically for TAP and its evaluation on industrial benchmarks.

Historical journey The origin of the Coyote code base can be traced back
to an earlier system called P# [11] that defined a restricted (domain-specific)
programming model for communicating state machines. The P# system has since
then evolved into an actor framework that is still supported by Coyote, however
Coyote itself has generalized to focus on TAP, making it a very different tool

P. Deligiannis et al.434

Industrial-Strength Controlled Concurrency Testing for C# Programs

compared to P#. Prior work with Coyote has either focused on exploration
strategies [48,40,39] or on applications [12,11,13], but not on the tool itself.

Coyote is useful for practitioners looking for industrial-strength tools (for
C#), as well as researchers interested in evaluating new exploration algorithms for
concurrency testing. This paper hopes to inspire and inform the reader towards
contributing new ideas, features, and case-studies to Coyote.

2 The Coyote Tool

The C# task asynchronous programming (TAP) model revolves around the Task
type that is used to encapsulate parallel computation. One can spawn a new task
to execute in parallel with its parent, wait on an existing task to finish, or query
for the result of a task once it has finished. Furthermore, the C# language offers
async and await keywords that make it very convenient to write efficient (non-
blocking) programs [37]. Similar features are also mainstream in other languages
such as Rust, Python, Javascript and Go, and even C++ has support for them.
Their semantics are fairly standard so we avoid them for space constraints, and
instead just illustrate using an example.

Fig. 1 shows a typical concurrency test that we will use as a running example
in this paper. The RunTest method creates two parallel tasks t1 and t2, waits
for them to finish and asserts some condition. A programmer can run this test
as-is with Coyote to find if the assertion can fail. There are two key points to
note about this example. First, its behavior is interleaving dependent. The loop
in SendMessages adds a string to the global list variable that is shared between
the two tasks, so its final value will have a mix of strings of the form aN and
bN, depending on the interleaving order. (This program has an unsynchronized
access to list, but let us assume for simplicity that operations on List are
atomic; in practice, one can guard these operations with locks). Second, while
this code seemingly only has two tasks, at runtime it can have up to a 100 tasks
created by the .NET runtime. The initial task created by SendMessages starts
executing the async lambda code, but when it hits the await point, the runtime
can (optionally) end the current task and spawn a new one to execute the rest
of the code after the awaited expression finishes. (This “magic” happens when
async methods get de-sugared by the C# compiler into state machines [52]. This
transformation is what allows the code to be non-blocking.) Note that the await
in this code can be hit 100 times (50 for each of the call to SendMessages). We
will revisit the complexity imposed by such implicit tasks, both for the tool to
take control (§4.1) and on space-space exploration later (§3.2); for now, we focus
on the user experience.

Coyote use is illustrated in Fig. 2. After the user compiles their C# program
containing one or more tests, they invoke the coyote rewrite command-line
tool to rewrite their binaries. This automatic rewriting adds instrumentation
to the original code to provide the necessary hooks and metadata for Coyote
to control the (task-based) concurrency in the program (§3). Next, the user
invokes the coyote test command-line tool to run their tests with the Coyote

435

List⟨string⟩ list = new (); Task SendMessages (string prefix) {
 return Task.Run (async () => {
 for (int val = 0; val < 50; val++) {
 list.Add (string.Concat (prefix, val));
 await Task.Yield ();
 }
 });
}

async Task RunTest () {
 Task t1 = SendMessages ("a");
 Task t2 = SendMessages ("b");
 await task.WhenAll (t1, t2);
 Assert.True (predicate (list));
}

Fig. 1: Example test code in C# with concurrency.

coyote test

coyote rewrite
Original
Binaries

Compile

Run N Test
Iterations

C# Debugger

Bug Found

Replay

Rewritten
Binaries

Repro
Trace

C#
Program

Instrument

Test

Fig. 2: Developer workflow when using Coyote.

test engine. The engine runs each test repeatedly for a user-specified number of
iterations until a bug (failed assertion or unhandled exception) is found. The
engine uses the instrumented hooks to intercept the execution of all workers in
the test, and control them to allow only a single worker to execute at a time.
The exact choice of which worker to enable in each step is left to an exploration
strategy (§3.2).

When a bug is found, Coyote dumps out the sequence of all scheduling
decisions taken in that test iteration. The user can replay the test failure using
the coyote replay command, as many times as they like, with the C# debugger
attached to step through the test deterministically.

Architecture, Extensibility The architecture of Coyote is illustrated in
Fig. 3. The test engine exposes an instrumentation API used for declaring the
concurrency, and synchronization, used in the program (§3). For task-based pro-
grams, the experience is seamless because the rewriting engine takes care of
adding calls to this API automatically (§4). One can also add a custom runtime
to Coyote. For instance, Coyote supports an actor-based programming model
(to code at the level of actors instead of tasks) [12]. The actor runtime, in this
case, performs the necessary calls into the Coyote test engine, again providing
a seamless experience to users. For other programming models, say, a program
using threads directly instead of tasks, these calls must either be inserted man-
ually or a rewriting pass be added to Coyote to add these calls automatically
for threads. Exploration strategies are also defined by a simple interface that
makes it easy to implement multiple techniques.

The test engine is roughly 11K lines of C# code, the rewriting engine and
the actor runtime are 12K lines each, and Coyote is overall 45K lines of code.

P. Deligiannis et al.436

User Program

Concurrency Unit Tests

Production Code & External Libraries

coyote test

Instrumentation API
Test Engine

Exploration Strategies

coyote rewrite
Rewriting

Engine Task Scheduler

.NET Runtime

Actor
Runtime

Wrapper TypesNon-Task Concurrency &
Synchronization Libraries

User-Specified Mocks

Manual
Instrumentation Run Instrumented

& Controlled Unit Test

Automated Binary
Instrumentation

for Tasks

RW PCT PCTt DB POS QL...

Fig. 3: The architecture of Coyote.

Coyote is heavily tested for robustness, with an additional 38K lines of code
of unit tests.

Limitations, Requirements Coyote requires a test to be deterministic mod-
ulo scheduling between workers. This implies that, for instance, the program
should not take a branch based on the current system time, or read data from an
external service or a file that may change outside the scope of the test. Coyote
also requires that tests be idempotent, that is, running the test twice has the
same effect as running it once. This is because Coyote runs a test multiple
times without re-starting the hosting process. Idempotence is easy to guarantee
by avoiding static variables. Violating these requirements can imply that replay
will fail. These are minor requirements, with users seldom complaining about
them in our experience so far.

A more significant requirement is that Coyote be able to control all the
concurrency created by a test. This may not happen when the program uses
an unsupported programming model, or a library that cannot be rewritten be-
cause, say, it includes native code, which is outside the scope of coyote rewrite.
Coyote has partial defenses against this: when it detects concurrent activity
outside its control, it tries to tolerate it by letting it finish on its own (§5), else
throws an error to make the user aware.

Coyote does not currently support the detection of low-level data races,
i.e., unsynchronized memory accesses, which can indicate concurrency bugs.
Race detection requires instrumentation at the level of individual memory ac-
cesses, which Coyote avoids for engineering simplicity and lower maintenance
costs. (Coyote only instruments at the level of task APIs or synchronization
operations.) Nonetheless, coyote rewrite is extensible, and the door is open
for any contributor to take on this responsibility and implement race detection
[22,49,23,51,50].

Industrial-Strength Controlled Concurrency Testing for C# Programs 437

interface Instrumentation
WorkerId OnWorkerCreated();
void OnWorkerStarted(WorkerId);
void OnWorkerCompleted(WorkerId);

void OnWorkerPaused(WorkerId,P);
void ScheduleNextWorker(WorkerId);
WorkerId GetCurrentWorkerId();

Fig. 4: The Coyote test engine instrumentation API.

Task Run (Action lambda) {
 WorkerId id = OnWorkerCreated ();
 Task task = new Task (() => {
 // Control the executing task (worker).
 OnWorkerStarted (id);
 lambda (); // Execute the task lambda.
 OnWorkerCompleted (id);
 ScheduleNextWorker (id);
 });
 task.Start (); // Start the task concurrently.
 return task;
}

void WaitAll (IEnumerable⟨Task⟩ tasks) {
 // Get the worker id associated with the current task.
 WorkerId id = GetCurrentWorkerId ();
 // Pause the current (task) worker until all the specified
 // tasks have completed their execution. Invoking this
 // API also calls ScheduleNextWorker to schedule a
 // worker that is not paused nor completed.
 OnWorkerPaused (id, () => tasks.All(t => t.IsCompleted));
 // At this point, Coyote guarantees that the predicate passed
 // to OnWorkerPaused above evaluates to true, hence all
 // tasks have completed and we can return.
}

Fig. 5: Example wrappers for task creation (left) and waiting (right) that call
into the Coyote test engine.

3 Coyote Test Engine

3.1 Instrumentation API

Fig. 4 lists the core instrumentation API that must be called from the user
program to provide the Coyote test engine (CTE) with enough hooks for con-
trolling its concurrency. CTE itself does not have a first-class understanding of
TAP (or any programming model for that matter); all information about the
program comes through this API, which allows us to keep CTE simple, and also
allows easy addition of new programming models.

The instrumentation API takes inspiration from prior work [3] that demon-
strated the generality of the API, even outside of C#, at capturing different pro-
gramming models. Each worker created in the program must inform CTE when
it is created (OnWorkerCreated), when it starts running (OnWorkerStarted),
and when it completes (OnWorkerCompleted). A worker calls OnWorkerPaused
with a predicate P to notify CTE that it has paused its execution and will be-
come unblocked when P evaluates to true. For instance, when a worker pauses
to acquire a lock, then P becomes true when the lock is released by some other
worker. A worker calls ScheduleNextWorker to ask CTE to consider running a
different worker. A worker calls GetCurrentWorkerId to ask CTE for its unique
identifier.

Fig. 5 shows wrapper methods for task creation (Run) and waiting on the
completion of a set of tasks (WaitAll). These methods implement the original
semantics, but additionally call the instrumentation APIs to notify CTE. We
show this only for illustrating the instrumentation APIs. In practice, the devel-
oper does not have to add these calls. §4 demonstrates how the Coyote binary

P. Deligiannis et al.438

rewriting engine automatically inserts these calls to cover the broad TAP pro-
gramming model. An approach that creates a substitute method for each TAP
method does not scale. For actor-based programs, the Coyote actor runtime
takes care of calling the CTE without the need for binary rewriting.

Any time the program invokes CTE via one of these APIs (referred to as
a scheduling point or step), CTE blocks the current worker, then looks at the
list of workers that are enabled (by inspecting their pause-predicates, if any). It
will then query the exploration strategy to select one worker from this list. The
selected worker is unblocked (rest all workers remain blocked) and is allowed to
execute until it hits a scheduling point again, at which point control goes into the
CTE and the process repeats. This design, of sequentializing workers to execute
only one-at-a-time is fairly standard in CCT tools [3].

3.2 Exploration Strategies

Coyote decouples the concern of how to control workers from how to explore
their interleavings. The latter is the responsibility of the exploration strategy,
which is defined by a common interface. At its core, the interface has a single
method that accepts a list of enabled workers and must return one of them. With
most of the heavy lifting performed by CTE, exploration strategies are easy to
implement; the largest one is only 400 lines of code. Furthermore, at the time
the exploration strategy is invoked, all workers are in a blocked state (blocked
by the CTE). Some strategies (like QL and POS; see below) require inspection
of the program state. This can be done safely by the strategy without worrying
about racing with the program’s execution.

The random walk strategy (RW) picks an enabled worker uniformly at ran-
dom in each step. This simple strategy has been shown to be effective in practice
and argued as a necessary baseline for other strategies [53]. The PCT strategy
[10] implements a priority-based scheduler. When a worker is created, it is as-
signed a new randomly-generated priority. At a scheduling point, PCT always
picks the enabled worker that has the highest priority. In addition, at d times
during an execution (called the bug depth parameter, which is supplied by a
user-controlled configuration), PCT lowers the priority of the currently exe-
cuting worker to be the smallest. These d priority lowering points are picked
uniformly across the entire program execution. This priority-based nature helps
PCT induce long delays in workers, unlike RW that switches back-and-forth
between workers much more frequently.

Task-based PCT PCT was originally designed for multi-threaded programs.
Later work observed its shortcomings for distributed systems and proposed the
revised strategy called PCTCP [48]. We now discuss a novel adaptation of the
idea behind PCTCP to TAP in a strategy called PCTt.

Consider again the program of Fig. 1. Let us define the function predicate to
check that the string a49 does not appear before b0 in list. For the assertion in
this program to fail, an interleaving must essentially execute t1 to completion
before t2 gets a chance. The chance of RW producing this interleaving is tiny:

Industrial-Strength Controlled Concurrency Testing for C# Programs 439

around 1 in 250. If we imagine a thread-based scenario (ideal setting for PCT),
where RunTest created two threads instead of tasks, then PCT (with d = 0) has
50% probability of hitting this bug. This is because if the first thread is assigned
a higher priority, it will execute to completion before the second thread gets a
chance to execute. However, PCT, with priorities-per-task, is unable to find this
bug because of all the implicit tasks that get created at the await point (recall
§2). Each time a new task is created, it gets a new randomly-generated priority.
In effect, for this program, PCT behaves like RW.

PCTCP addresses this problem by constructing a partial order between
workers, where two workers w1 and w2 are ordered if the programming model
enforces that w2 must only start after w1 finishes. This partial order, constructed
on-the-fly during program execution, is then decomposed into chains, which are
totally-ordered subsets of the partial order. PCTCP then maintains priorities
per chain, not per worker. When a new worker starts, it gets assigned to a chain
(existing or a new one) and inherits the priority of the chain. PCTCP’s effec-
tiveness has only been demonstrated for distributed message-passing systems.

PCTt adapts the concept of chains for TAP. On the explicit creation of a task
(using Task.Run), it gets assigned to a new chain (hence, it gets a randomly-
generated priority). If a task t yields control by executing Task.Yield, the
continuation task is assigned to the same chain as t (hence, it inherits its prior-
ity). When a task t1 awaits another task t2 to complete, the continuation task
of t1 is assigned to the chain of t2 because the continuation can only execute
after t2 completes. (In reality, the continuation task is assigned to the chain of
the task that completes t2, because t2 may have its own continuations created.)
PCTt recovers the benefits of PCT; in our running example, only two chains
are created, and it can find the bug with a 50% probability.

Other strategies Coyote also implements a strategy based on reinforcement-
learning (QL) [40]. QL requires a partial hash (or fingerprint) of the program
state and then learns a model that maximize the number of unique fingerprints
seen during a test run. Increased coverage helps uncover more bugs. The partial
order sampling (POS) strategy [56] uses information about which workers are
racing with each other, i.e., they are about to access the same object (either a
memory location or a synchronization object). POS uses a priority-based sched-
uler like PCT, but instead of lowering priority at d chosen points, POS keeps
shuffling (i.e., re-assigning) priorities of racing workers at each step.

Other strategies available in Coyote are delay bounding (DB) [19] and vari-
ants of RW that use a biased coin. These strategies can also be combined either
in the same test iteration (run one strategy for certain number of steps, then
switch to running another strategy) or across iterations (pick a different strategy,
in a round-robin fashion, for each iteration).

Data non-determinism Exploration strategies also offer a means to generate
unconstrained boolean or integer values. Coyote exposes these APIs to develop-
ers, who can use them to express non-determinism in their program. An example
is when testing for the robustness of a program against faults. In this case, the

P. Deligiannis et al.440

developer can non-deterministically choose to raise a fault (like an exception or
return an error code) and check that their code can handle the fault correctly.
Other examples are non-deterministically firing timeouts, non-deterministically
choosing what method to call from a set of equivalent library methods, etc. Most
exploration strategies resolve this non-determinism uniformly at random, with
the exception of QL that tries to learn, alongside scheduling decisions, what
return values are able to maximize program coverage.

Liveness checking In addition to catching safety violations (assertion failures
and uncaught exceptions), Coyote can also check liveness properties where,
essentially, one asserts that every program run eventually makes progress. The
definition of progress is programmable, using the concept of liveness monitors
(variant of deterministic Büchi automata) borrowed from the P modeling lan-
guage [15]. A violation of a liveness property is an infinite run where no progress
is made. Testing cannot produce an infinite run, so instead Coyote looks for a
sufficiently long execution based on user-set thresholds [27,39]. Liveness proper-
ties are not rare. In fact, they are commonly asserted when testing distributed
services to check that the service eventually completes every user request [12].

Any exploration strategy can be used for liveness checking, as long as it is
fair, i.e., it does not contiguously starve an enabled worker for a long time. Un-
fairness can easily lead to liveness violations, but such violations are considered
false positives because they cannot happen in practice as system scheduling is
generally fair. RW is (probabilistically) fair, but PCT is not. Coyote con-
verts unfair strategies to fair ones by running them up to a certain number of
scheduling steps and then switching to use RW.

4 Automation for C# Task Asynchronous Programs

The style of instrumentation shown in Fig. 5 is not practical because there
are many ways in which lambdas and tasks can be created (some return a re-
sult on completion, some do not, and there are optimized variants of tasks like
ValueTask [45], etc.). Imposing directly on the creation process would be very
cumbersome. One must also be able to handle both explicit creation of tasks,
as well as the implicit creation that happens at await points. After much trial-
and-error, we arrived at an efficient solution that is simple and easy to main-
tain, even as C# itself evolves. We crucially rely on controlling task execution
through a narrow lower layer of abstraction in the .NET runtime called the
TaskScheduler [44]. We observed that whenever a task is created, it goes to the
.NET default task scheduler, which is then responsible for executing the task on
the .NET thread pool. This task scheduler can be subclassed, which we do as
shown in Fig. 6 (right). Coyote.TaskScheduler offers a convenient place to call
into the test engine, without requiring imposition on the creation of the task or
its lambda. The job of rewriting then is to route tasks to this scheduler instead
of the default task scheduler. We do this by defining simple wrapper methods
for Task APIs, and rewriting the user C# binaries to call the wrapper methods
instead of the original ones.

Industrial-Strength Controlled Concurrency Testing for C# Programs 441

class Coyote.TaskWrapper
state

TestEngine engine
Coyote.TaskScheduler scheduler

static Task Run(F func)
task← new Task(func)
scheduler.QueueTask(task)
return task

static void Wait(Task self)
id← engine.GetCurrentWorkerId()
P ← self.Status.IsCompleted
engine.OnWorkerPaused(id,P)
self.Wait()

class Coyote.TaskScheduler : TaskScheduler
state

TestEngine engine
ThreadPool pool // Managed by Coyote.

void QueueTask(Task task)
id← engine.OnWorkerCreated()
thread← pool.GetNextAvailableThread()
thread.Run(()→ ExecuteTask(task, id))

void ExecuteTask(Task task, WorkerId id)
engine.OnWorkerStarted(id)
base.RunInline(task) // Execute task inline.
engine.OnWorkerCompleted(id)
engine.ScheduleNextWorker(id)

Fig. 6: Wrapper methods for Task APIs (left) and the implementation of the
Coyote task scheduler (right).

Fig. 6 (left) illustrates static wrapper methods for Task.Run and Task.Wait.
Notice that on TaskWrapper.Run, no modification to the lambda (func) is re-
quired. A task gets created as usual, then gets enqueued to the Coyote task
scheduler, which, in turn, executes the task with appropriate calls to the test
engine (ExecuteTask). This solution piggybacks on the RunInline functionality
that the default scheduler also uses. The TaskWrapper.Wait method adds the
call to OnWorkerPaused.

What about implicitly created tasks? This required more digging into the
C# compiler to understand the compilation of async methods to state machines
[52]. Fortunately, all we required is to identify the point where continuation tasks
are created by these state machines, and instead call a wrapper method (similar
to TaskWrapper.Run) that enqueues the task to the Coyote task scheduler.

4.1 Binary Rewriting for C# Tasks

Binary rewriting is necessary to provide a push-button experience for Coyote
on TAP programs. In C#, code gets compiled into the Common Intermediate
Language (CIL) [17], which is an object-oriented machine-independent bytecode
language that can run on top of the .NET runtime in any supported operating
system (Windows, Linux and macOS). Each compiled C# program consists of
one or more CIL binaries. Each binary contains an assembly, which is a unit of
functionality implemented as a set of types (these can be exposed publicly to be
consumed by other assemblies). Each type might contain members such as fields
and methods, and so on.

We implemented the binary rewriting engine on top of Cecil [46], an open-
source .NET library that provides a rich API for rewriting CIL code. The rewrit-
ing engine architecture is illustrated in Fig. 7. The engine loads all program
binaries from disk to access the CIL assemblies in-memory, topologically sorts
them (to ensure that dependencies are processed first), and then traverses each
assembly (using the visitor pattern) to apply a sequence of CIL rewriting passes,
where each pass focuses on a different type of instrumentation.

P. Deligiannis et al.442

Instrumentation Engine
Assembly Loader

Assembly Writer

Rewritten
CIL

Binaries

Original
CIL

Binaries
Assembly Visitor

...Pass 1 Pass 2 Pass N

interface Pass
void VisitAssembly(AssemblyInfo);
void VisitType(TypeDefinition);
void VisitField(FieldDefinition);
void VisitMethod(MethodDefinition);
void VisitVariable(VariableDefinition);
void VisitInstruction(Instruction);
void CompleteVisit();

Fig. 7: The architecture of the Coyote rewriting engine (left). The interface of
a CIL rewriting pass (right).

Each rewriting pass implements the Coyote Pass interface, which is listed in
Fig. 7. The rewriting engine visitor will traverse the CIL assembly and invoke the
corresponding pass method for each encountered type, field, method signature,
as well as each variable and instruction in each method body.

Built-in Rewriting Passes Coyote implements and invokes in-order the fol-
lowing four passes: type rewriting pass, task API rewriting pass, async rewriting
pass, and inter-assembly invocation rewriting pass. The type rewriting pass is re-
sponsible for replacing certain C# system library types in the user program with
corresponding drop-in-replacement types that are implemented by Coyote. The
replacement types implement exactly the same interface as the original types,
and invoke the original methods to maintain semantics, but are instrumented
with callbacks to the Coyote test engine. Some examples of replaced types are:
(1) System.Threading.Monitor type, which implements the lock statement in
C#, and (2) the System.Threading.Semaphore type that is another variant of
a lock. The Coyote versions of these types invoke the test engine to notify it
when a worker acquires or releases a lock. These two are the synchronization
primitives that Coyote supports by default, in addition to Task APIs. Adding
support for more synchronization requires adding another type rewriting pass.

The task API rewriting pass inserts calls to the Coyote.TaskWrapper wrap-
per type, as discussed earlier. The async rewriting pass is similar, except for
wrapping APIs that create implicit tasks. Finally, the inter-assembly invocation
rewriting pass is responsible for identifying invocations in the code that are made
across CIL assembly boundaries, where the target assembly is not rewritten by
Coyote. Coyote adds instrumentation to detect (and tolerate) uncontrolled
concurrency (see §5).

New passes that implement the Pass interface can be easily integrated in
the current pipeline of passes, allowing power users to extend coyote rewrite
for custom rewriting (e.g., to support controlling a new synchronization type
without having to manually use the Coyote instrumentation API).

Design Considerations We decided to target CIL for instrumentation in-
stead of doing it at the level of ASTs. This helps reduce the instrumentation
scope because the CIL instruction set is much smaller than C# surface syntax.

Industrial-Strength Controlled Concurrency Testing for C# Programs 443

Furthermore, CIL changes infrequently (last update was in 2012 [17]), and we
can target pre-compiled binaries without access to their source code.

5 Additional Features

Partially-Controlled Exploration As mentioned in §2, Coyote requires
tests to be deterministic modulo the concurrency that it controls. This require-
ment can be broken when the test creates a worker without reporting it to
the Coyote test engine, which impacts the ability of Coyote to reproduce
an execution. This can happen when using APIs outside of the TAP program-
ming model or by calling into a library that has not been rewritten. Partially-
controlled exploration allows the controlled part of a program to be tested with
high-coverage, even when interacting with an uncontrolled part. In fact, Coyote
recommends to developers that they should only rewrite their test binaries as
well as the binaries of their production code, but leave the binaries of any exter-
nal dependencies unmodified (to be handled by partially-controlled exploration).

During partially-controlled exploration, Coyote will treat any un-rewritten
binaries as “pass-through”, and their methods are invoked atomically from the
perspective of the tool. In this testing mode, Coyote sequentializes the exe-
cution of the controlled workers, as usual, and if a controlled worker invokes a
method in an un-rewritten binary, or waits on a task that was earlier returned by
a method from a non-rewritten binary, or invokes an unsupported low-level C#
concurrency API, then Coyote detects this and invokes ScheduleNextWorker
to explore a scheduling decision. Instead of immediately trying to choose a con-
trolled worker to schedule, Coyote uses a (tunable) heuristic that gives a chance
to wait for the uncontrolled task or invocation to first complete, before trying to
resolve the scheduling decision. This is important because instead of regressing
coverage, it allows Coyote to cover scenarios where completing the uncontrolled
task or invocation first results in new states of the state space being available
for exploration.

Setting max-steps Some tests can be potentially non-terminating, i.e., some
executions of the test will go on forever. Non-termination comes naturally when
a program has spinloops or polling loops (loops that keep going until some condi-
tion is met), or when they are unavoidable, as in consensus protocols like Paxos
or Raft that cannot avoid the existence of infinite executions. coyote test pro-
vides the option of setting a bound on the length of a test iteration in terms of
the number of scheduling points that it hits. This bound is supplied with the
max-steps flag. The test engine keeps a count of the number of scheduling points
in the current iteration. When it hits the max value, the test engine throws an
exception in all of the workers (that would currently be blocked by the engine).
This exception essentially kills the worker by propagating all the way up to the
test harness, where it is caught by the engine. Once all workers are killed, the
engine starts the next iteration.

This solution, of throwing an exception to kill a worker, only works when
the worker does not catch the exception to try and resume the execution. All

P. Deligiannis et al.444

exceptions in C# must derive from the System.Exception type, and a construct
like catch(Exception) will catch all exceptions. Coyote gets around this prob-
lem by using a binary rewriting pass that edits all catch statements to disallow
catching of Coyote exceptions.

Thread-safety violations A thread-safety violation occurs in a program
when it concurrently invokes some library API that is not designed to be
thread safe. Prior work showed the prevalence of such errors in .NET pro-
grams when accessing data structures such as dictionaries and lists in the
System.Collections.Generic namespace [33]. These data structures do not
offer thread safe APIs. (In concurrent scenarios, one should instead use the data
structures in System.Collections.Concurrent namespace.)

Coyote offers the ability to catch such errors. It implements a rewriting pass
that replaces such a data structure, say Dictionary, with a drop-in replacement
type WrapperDictionary. The latter keeps tracks of concurrent (write-write or
write-read) accesses and throws an exception when there are two such simulta-
neous accesses. The exception causes Coyote to report a test failure.

Actor runtime Coyote offers a library, inspired from the P# [11] line of work,
that allows a developer to use actors to express concurrency in their program.
Actors, when created, run concurrently with respect to other actors. They con-
tinue to be alive unless explicitly halted. Each actor has an inbox where it listens
for messages from other actors and processes them in a FIFO order. Several pro-
duction systems have been build with Coyote’s actor framework [12]. The actor
runtime takes care of calling the test engine instrumentation APIs at the appro-
priate points, such as when creating an actor or sending a message to another
actor. Hence, no rewriting is required. The Coyote test engine treats tasks and
actors the same way, allowing a developer to freely mix the two programming
models, i.e., test programs that use both actors and tasks.

6 Evaluation

Our evaluation covers three experiments, each on a different set of benchmarks.
Each benchmark is a concurrent program with a known bug. We measure the
effectiveness of Coyote by the number of times that it is able to hit the bug
within a fixed number of test iterations. For each benchmark, we report its
degree of concurrency (DoC), defined as the maximum number of simultaneously
enabled workers, and the number of scheduling decisions (#SD), i.e., number of
times the exploration strategy is invoked on average per test iteration.

The first experiment compares the performance of PCTt against PCT on
task-heavy programs. We took a proprietary production service of Microsoft,
which we call ProdService. The service runs as part of the Azure platform;
it is roughly 54K lines of C#, and is designed to be highly-concurrent for high
throughput. The owning engineering team were routinely running Coyote on
multiple concurrency tests. We took an intermediate version of this service and

Industrial-Strength Controlled Concurrency Testing for C# Programs 445

Table 1: Results on ProdService tests. Degree of concurrency varied from 5
to 16, and the number of scheduling decisions varied from 94 to 1054.

Test# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

RW 1 1 7 7 7 7 7 7 1 4 7 7 7 1 1 1 4 7 4 7 7

PCT 46 3 7 7 7 7 7 7 30 17 2 1 1 1 2 7 5 1 1 8 7

PCTt 119 159 49 2 5 5 11 8 43 59 8 11 7 72 71 7 50 7 7 45 1

Table 2: Results from testing buggy protocol implementations. Number of test
iterations was set to 10K, except for FailureDetector and Paxos that used 100K
iterations. PCT, PCTt and DB use the bound d = 10.

Exploration Strategies

Benchmarks DoC #SD RW PCT PCTt DB POS QL

P
ro

to
co

ls ChainReplication 9 620 7 22 13 1 7 7

Chord 7 223 1715 557 1185 537 2782 1533
FailureDetector 6 115 7 37 1 11 2 1
Paxos 11 217 7 5 2 10 1 7

Raft 18 798 166 18 88 7 204 7

ran all tests with RW, PCT and PCTt, each with 1000 iterations each. There
were a total of 111 tests, out of which 21 tests reported a failure (i.e., bug) with
some strategy. The comparison is shown in Table 1. (We actually ran both PCT
and PCTt with multiple different values of the d parameter, and selected the
best among them for each strategy; this value turned out to be d = 10 for both.)

Table 1 shows superior performance of PCTt. It is able to find 17 test failures,
compared to 13 for PCT and 9 for Random. Furthermore, on tests that failed
with both PCT and PCTt, the latter found the bug 9 times more often (geo
mean). We observe that these tests created many tasks, roughly 277 tasks (geo
mean) in each test iteration, which throws off PCT. With PCTt, the number of
chains was 6 times smaller (geo mean). Running these 21 tests for 1000 iterations
each takes roughly 50 min (wall clock) on a 16 core AMD EPYC (2.6Ghz) VM,
running Ubuntu 20.04 on Azure, when utilizing 14 threads on the machine to
run tests in parallel.

The second experiment is on buggy protocol implementations from prior work
[48,40], shown in Table 2. This experiment evaluates a wider range of strategies.
Three schedulers (PCT, PCTt and DB) find all the bugs, but none is a clear
winner. A combination of schedulers is likely required for reliably finding bugs
in a small number of iterations.

The final experiment is to show that Coyote is indeed state-of-the-art by
comparing against other tools. We did not find any other CCT tool for C#, so
we instead took an established benchmark suite SCTBench [53] of C/C++ pro-
grams that use pthreads for concurrency, and manually ported some of them
to C# (Table 3), replacing pthreads APIs with Task APIs. These benchmarks
have potentially racy shared variables, so we implemented an experimental bi-

P. Deligiannis et al.446

Table 3: Results on SctBench with 10K test iterations. PCT uses the d = 3
and DB uses the d = 5 bound. Numbers in parenthesis report performance on
the same benchmark-strategy pair from a different CCT tool (Maple) [56].

Exploration Strategies

Benchmarks DoC #SD RW PCT DB POS QL

S
c
t
B

en
c
h

bluetooth_dr... 2 18 598(628) 281(597) 651 610(847) 402
deadlock01_bad 3 12 3132(3668) 994(1714) 1717 4436(3315) 2856
queue_bad 3 53 10000(9999) 8212(1415) 9387 9737(9999) 10000
reorder_10_bad 52 238 7(7) 18(14) 7 2568(308) 7

reorder_20_bad 111 515 7(7) 4(27) 7 2526(1709) 7

reorder_5_bad 27 121 1(18) 36(110) 7 2591(668) 34
token_ring_bad 5 31 1305(1245) 1303(1717) 403 1640(1724) 1552
twostage_bad 15 115 192(806) 146(1959) 6 7440(1212) 273

nary rewriting pass in Coyote that adds scheduling points on heap accesses,
to ease the porting exercise. A direct comparison with prior tools is difficult be-
cause there can still be subtle differences in how scheduling points get inserted.
Regardless, we note that numbers for POS are roughly in agreement with its
original paper [56] and numbers for PCT and RW are in agreement with a prior
empirical study [53]. (Note that PCTt is identical to PCT on these benchmarks
because there are no task continuations.) Our implementation of POS performs
better than the original one, but the original implementation is unavailable for
us to make a more accurate assessment. This comparison is useful to ground
Coyote with respect to related work.

The code and scripts to run all the non-proprietary experiments from this
paper are available as an artifact on Zenodo [14].

7 Related Work

The term controlled concurrency testing (CCT) was coined only recently [53] but
it inherits its roots from stateless model checking (SMC) that was popularized
by VeriSoft [24]. Stateful approaches require the ability to record the state of
an executing program; this is hard to achieve for production code, consequently
stateful checking tools [26,6] are often applied to models of code that are written
in custom languages. SMC/CCT, on the other hand, only record the sequence
of actions taken during an execution, making them the technique of choice for
directly testing code written in commercial languages (like C#).

Research in SMC/CCT can further be classified in two categories. One cat-
egory is of exhaustive techniques, where the goal is to explore the entire state-
space of a program (in reality, it is the state-space of a fixed test that invokes
a bounded workload on the program), and obtain a verified verdict. Exhaustive
techniques are based on the notion of partial order reduction (POR) [24] that
constructs equivalence classes of executions so that only one exploration per

Industrial-Strength Controlled Concurrency Testing for C# Programs 447

equivalence class is required [35]. Recently, this line of work has produced sev-
eral tools, such as CDSChecker [47], GenMC [30], and Nidhugg [2], that have
demonstrated value in verifying concurrency primitives (e.g., latches, mutex im-
plementations) and concurrent data structures, especially when considering weak
memory behaviors [1,28,29].

The other category for SMC/CCT are techniques aimed towards bug-finding.
These techniques are either bounded (i.e., aim to explore only a subset of the
executions) or randomized or both. By lowering expectations (i.e., not insisting
on covering the entire state-space), these techniques can be applied on larger
systems. We have discussed several instances of these techniques throughout this
paper. The first work that popularized bug-finding was the notion of context-
bounded exploration [41]. Coyote borrows heavily from this line of work on
bug-finding techniques, which is evident in the set of exploration strategies that
it supports. Implementing POR-based strategies is possible; the POS strategy
already takes Coyote in this direction. The absence of exhaustive techniques
has (so far) not been felt by users of Coyote, likely because the usage scenarios
have neither focused on weak memory behaviors (more present in C/C++ rather
than C#), nor on verifying concurrent data structures. Nonetheless, supporting
POR-based techniques remains an important direction for future work.

Related to the idea of CCT for bug-finding are noise-injection-based tech-
niques [21,20,18]. These techniques rely on perturbing the execution of a con-
current program by injecting noise such as sleep statements, which force the
execution to explore alternative interleavings. Unlike CCT, no control is re-
quired on concurrent workers, hence these techniques have simpler engineering
requirements. However, the tradeoff is that the loss of control implies that the
ability to explore specific interleavings, such as what PCT requires, is reduced.
The ANaConDA tool has successfully demonstrated noise-injection in an indus-
trial setting [21]. It can be interesting to explore the use of noise injection to
provide coverage in portions of code that are not controlled by Coyote.

The CHESS tool [41], to the best of our knowledge, was the only other CCT
tool to support C#. CHESS is currently not in a usable state. It was designed
prior to the popularity of TAP in C#, thus had no special support for tasks.
In terms of implementation, it occupied a different design space than Coyote.
It relied on interception of C# threading APIs and redirecting them to custom
mocks. Maintenance of these mocks was an engineering cost. Furthermore, the
interception technology relied on a framework [36] that also went out of support.
This showcases that the complexity of supporting C# must be met with good
engineering, built on stable frameworks. Coyote is also more extensible, both
in terms of programming frameworks, as well as exploration strategies.

Acknowledgements The authors would like to thank everyone who has con-
tributed to Coyote over the years. This includes many open-source contribu-
tors that have filed issues and fixes, as well as developers that have integrated
Coyote into their engineering process to provide valuable insights on what con-
currency testing can and should do. We would especially like to thank Immad
Naseer for his help with ProdService.

P. Deligiannis et al.448

References

1. Abdulla, P.A., Atig, M.F., Jonsson, B., Lång, M., Ngo, T.P., Sagonas, K.: Optimal
stateless model checking for reads-from equivalence under sequential consistency.
Proc. ACM Program. Lang. 3(OOPSLA), 150:1–150:29 (2019)

2. Abdulla, P.A., Atig, M.F., Jonsson, B., Ngo, T.P.: Dynamic partial order reduc-
tion under the release-acquire semantics (tutorial). In: Atig, M.F., Schwarzmann,
A.A. (eds.) Networked Systems - 7th International Conference, NETYS 2019, Mar-
rakech, Morocco, June 19-21, 2019, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 11704, pp. 3–18. Springer (2019)

3. Agarwal, U., Deligiannis, P., Huang, C., Jung, K., Lal, A., Naseer, I., Parkinson,
M., Thangamani, A., Vedurada, J., Xiao, Y.: Nekara: Generalized concurrency
testing. In: 36th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021. pp. 679–
691. IEEE (2021)

4. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, USA (1986)

5. Amazon, Microsoft, Berkeley: P: Formal Modeling and Analysis of Distributed
(Event-Driven) Systems. https://github.com/p-org/P (2022)

6. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: A model checker
for concurrent software. In: Computer Aided Verification, 16th International Con-
ference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings. pp. 484–487
(2004)

7. Microsoft Research: Coyote: Fearless coding for reliable asynchronous software.
https://github.com/microsoft/coyote (2020)

8. Microsoft Research: Coyote Documentation, Tutorials and References. https://
microsoft.github.io/coyote/ (2022)

9. Microsoft Research: Telemetry in Coyote. https://microsoft.github.io/coyote/
#get-started/telemetry/ (2022)

10. Burckhardt, S., Kothari, P., Musuvathi, M., Nagarakatte, S.: A randomized sched-
uler with probabilistic guarantees of finding bugs. In: ASPLOS. pp. 167–178 (2010)

11. Deligiannis, P., Donaldson, A.F., Ketema, J., Lal, A., Thomson, P.: Asynchronous
programming, analysis and testing with state machines. In: PLDI. pp. 154–164
(2015)

12. Deligiannis, P., Ganapathy, N., Lal, A., Qadeer, S.: Building reliable cloud services
using coyote actors. In: Curino, C., Koutrika, G., Netravali, R. (eds.) SoCC ’21:
ACM Symposium on Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021.
pp. 108–121. ACM (2021)

13. Deligiannis, P., McCutchen, M., Thomson, P., Chen, S., Donaldson, A.F., Erickson,
J., Huang, C., Lal, A., Mudduluru, R., Qadeer, S., Schulte, W.: Uncovering bugs
in distributed storage systems during testing (not in production!). In: FAST. pp.
249–262 (2016)

14. Deligiannis, P., Senthilnathan, A., Nayyar, F., Lovett, C., Lal, A.: Industrial-
Strength Controlled Concurrency Testing for C# Programs with Coyote - Artifact
(Nov 2022). https://doi.org/10.5281/zenodo.7311192, https://zenodo.org/record/
7311192#.Y8ru2EHMJaa

15. Desai, A., Gupta, V., Jackson, E.K., Qadeer, S., Rajamani, S.K., Zufferey, D.: P:
safe asynchronous event-driven programming. In: PLDI. pp. 321–332 (2013)

16. Desai, A., Qadeer, S., Seshia, S.A.: Systematic testing of asynchronous reactive
systems. In: FSE. pp. 73–83 (2015)

Industrial-Strength Controlled Concurrency Testing for C# Programs 449

https://github.com/p-org/P
https://github.com/microsoft/coyote
https://microsoft.github.io/coyote/
https://microsoft.github.io/coyote/
https://microsoft.github.io/coyote/#get-started/telemetry/
https://microsoft.github.io/coyote/#get-started/telemetry/
https://doi.org/10.5281/zenodo.7311192
https://doi.org/10.5281/zenodo.7311192
https://zenodo.org/record/7311192#.Y8ru2EHMJaa
https://zenodo.org/record/7311192#.Y8ru2EHMJaa

17. Ecma International: ECMA-335, Common Language Infrastructure (CLI), 6th edi-
tion. https://www.ecma-international.org/publications-and-standards/standards/
ecma-335/ (2012)

18. Edelstein, O., Farchi, E., Goldin, E., Nir, Y., Ratsaby, G., Ur, S.: Framework for
testing multi-threaded java programs. Concurrency and Computation: Practice
and Experience 15(3-5), 485–499 (2003)

19. Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: Proceedings
of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011. pp. 411–422 (2011)

20. Fiedor, J., Hrubá, V., Krena, B., Letko, Z., Ur, S., Vojnar, T.: Advances in noise-
based testing of concurrent software. Softw. Test. Verification Reliab. 25(3), 272–
309 (2015)

21. Fiedor, J., Muzikovská, M., Smrcka, A., Vasícek, O., Vojnar, T.: Advances in the
ANaConDA framework for dynamic analysis and testing of concurrent C/C++
programs. In: Tip, F., Bodden, E. (eds.) Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2018, Amster-
dam, The Netherlands, July 16-21, 2018. pp. 356–359. ACM (2018)

22. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multi-
threaded programs. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2004, Venice, Italy, January
14-16, 2004. pp. 256–267 (2004)

23. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection.
In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. pp.
121–133 (2009)

24. Godefroid, P.: Software model checking: The verisoft approach. Formal Methods
in System Design 26(2), 77–101 (2005)

25. Gray, J.: Why do computers stop and what can be done about it? In: Proceedings of
the 5th Symposium on Reliability in Distributed Software and Database Systems.
pp. 3–12. IEEE (1986)

26. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 1st edn. (2011)

27. Killian, C.E., Anderson, J.W., Jhala, R., Vahdat, A.: Life, death, and the critical
transition: Finding liveness bugs in systems code (awarded best paper). In: Bal-
akrishnan, H., Druschel, P. (eds.) 4th Symposium on Networked Systems Design
and Implementation (NSDI 2007), April 11-13, 2007, Cambridge, Massachusetts,
USA, Proceedings. USENIX (2007)

28. Kokologiannakis, M., Marmanis, I., Gladstein, V., Vafeiadis, V.: Truly stateless,
optimal dynamic partial order reduction. Proc. ACM Program. Lang. 6(POPL),
1–28 (2022)

29. Kokologiannakis, M., Raad, A., Vafeiadis, V.: Effective lock handling in stateless
model checking. Proc. ACM Program. Lang. 3(OOPSLA), 173:1–173:26 (2019)

30. Kokologiannakis, M., Vafeiadis, V.: Genmc: A model checker for weak memory
models. In: Silva, A., Leino, K.R.M. (eds.) Computer Aided Verification - 33rd
International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 12759, pp. 427–440. Springer (2021)

31. Lam, W., Godefroid, P., Nath, S., Santhiar, A., Thummalapenta, S.: Root caus-
ing flaky tests in a large-scale industrial setting. In: Zhang, D., Møller, A. (eds.)
Proceedings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019. pp. 101–111.
ACM (2019)

P. Deligiannis et al.450

https://www.ecma-international.org/publications-and-standards/standards/ecma-335/
https://www.ecma-international.org/publications-and-standards/standards/ecma-335/

32. Leesatapornwongsa, T., Hao, M., Joshi, P., Lukman, J.F., Gunawi, H.S.: SAMC:
Semantic-aware model checking for fast discovery of deep bugs in cloud systems.
In: OSDI. pp. 399–414 (2014)

33. Li, G., Lu, S., Musuvathi, M., Nath, S., Padhye, R.: Efficient scalable thread-
safety-violation detection: finding thousands of concurrency bugs during testing.
In: Brecht, T., Williamson, C. (eds.) Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada, October
27-30, 2019. pp. 162–180. ACM (2019)

34. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests. In:
Cheung, S., Orso, A., Storey, M.D. (eds.) Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014. pp. 643–653. ACM (2014)

35. Mazurkiewicz, A.W.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986, Part
II, Proceedings of an Advanced Course, Bad Honnef, Germany, 8-19 September
1986. Lecture Notes in Computer Science, vol. 255, pp. 279–324. Springer (1986)

36. Microsoft: CCI: Common Compiler Infrastructure. https://github.com/microsoft/
cci (2015)

37. Microsoft: Asynchronous programming in C#. https://docs.microsoft.com/en-us/
dotnet/csharp/programming-guide/concepts/async/ (2019)

38. Microsoft: Task Asynchronous Programming Model. https://learn.
microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
task-asynchronous-programming-model (2022)

39. Mudduluru, R., Deligiannis, P., Desai, A., Lal, A., Qadeer, S.: Lasso detection
using partial-state caching. In: FMCAD. pp. 84–91 (2017)

40. Mukherjee, S., Deligiannis, P., Biswas, A., Lal, A.: Learning-based controlled con-
currency testing. Proc. ACM Programming Languages 4(OOPSLA), 230:1–230:31
(2020)

41. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation, San Diego, California,
USA, June 10-13, 2007. pp. 446–455 (2007)

42. Musuvathi, M., Qadeer, S.: Fair stateless model checking. In: PLDI. pp. 362–371.
ACM (2008)

43. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Find-
ing and reproducing Heisenbugs in concurrent programs. In: OSDI. pp. 267–280.
USENIX (2008)

44. .Net Documentation: TaskScheduler Class. https://learn.microsoft.com/en-us/
dotnet/api/system.threading.tasks.taskscheduler?view=net-6.0 (2022)

45. .Net Documentation: ValueTask Class. https://learn.microsoft.com/en-us/dotnet/
api/system.threading.tasks.valuetask-1?view=net-6.0 (2022)

46. .NET Foundation: Mono.Cecil: inspect, modify and create .NET programs and
libraries. https://github.com/jbevain/cecil (2022)

47. Norris, B., Demsky, B.: Cdschecker: checking concurrent data structures written
with C/C++ atomics. In: Hosking, A.L., Eugster, P.T., Lopes, C.V. (eds.) Proceed-
ings of the 2013 ACM SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages & Applications, OOPSLA 2013, part of SPLASH
2013, Indianapolis, IN, USA, October 26-31, 2013. pp. 131–150. ACM (2013)

48. Ozkan, B.K., Majumdar, R., Niksic, F., Befrouei, M.T., Weissenbacher, G.: Ran-
domized testing of distributed systems with probabilistic guarantees. PACMPL
2(OOPSLA), 160:1–160:28 (2018)

Industrial-Strength Controlled Concurrency Testing for C# Programs 451

https://github.com/microsoft/cci
https://github.com/microsoft/cci
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/task-asynchronous-programming-model
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/task-asynchronous-programming-model
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/task-asynchronous-programming-model
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=net-6.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=net-6.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1?view=net-6.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1?view=net-6.0
https://github.com/jbevain/cecil

49. Park, S., Lu, S., Zhou, Y.: Ctrigger: exposing atomicity violation bugs from their
hiding places. In: Proceedings of the 14th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS 2009,
Washington, DC, USA, March 7-11, 2009. pp. 25–36 (2009)

50. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: A
dynamic data race detector for multi-threaded programs. In: Proceedings of the
Sixteenth ACM Symposium on Operating System Principles, SOSP 1997, St. Malo,
France, October 5-8, 1997. pp. 27–37 (1997)

51. Sen, K.: Race directed random testing of concurrent programs. In: Proceedings
of the ACM SIGPLAN 2008 Conference on Programming Language Design and
Implementation, Tucson, AZ, USA, June 7-13, 2008. pp. 11–21 (2008)

52. Tepliakov, S.: Microsoft DevBlogs: Dissecting the async methods in C#. https:
//devblogs.microsoft.com/premier-developer/dissecting-the-async-methods-in-c/
(2017)

53. Thomson, P., Donaldson, A.F., Betts, A.: Concurrency testing using controlled
schedulers: An empirical study. TOPC 2(4), 23:1–23:37 (2016)

54. Šimša, J., Bryant, R., Gibson, G.: dBug: Systematic testing of unmodified dis-
tributed and multi-threaded systems. In: SPIN. pp. 188–193. Springer-Verlag
(2011)

55. Yang, J., Chen, T., Wu, M., Xu, Z., Liu, X., Lin, H., Yang, M., Long, F., Zhang,
L., Zhou, L.: MODIST: Transparent model checking of unmodified distributed
systems. In: NSDI. pp. 213–228 (2009)

56. Yuan, X., Yang, J., Gu, R.: Partial order aware concurrency sampling. In: Chockler,
H., Weissenbacher, G. (eds.) Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 10982, pp. 317–335. Springer (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

P. Deligiannis et al.452

https://devblogs.microsoft.com/premier-developer/dissecting-the-async-methods-in-c/
https://devblogs.microsoft.com/premier-developer/dissecting-the-async-methods-in-c/
http://creativecommons.org/licenses/by/4.0/

	Industrial-Strength Controlled Concurrency Testing for C# Programs with Coyote
	1 Introduction
	2 The Coyote Tool
	3 Coyote Test Engine
	3.1 Instrumentation API
	3.2 Exploration Strategies

	4 Automation for C# Task Asynchronous Programs
	4.1 Binary Rewriting for C# Tasks

	5 Additional Features
	6 Evaluation
	7 Related Work
	References

