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ABSTRACT
Hypertrophic Cardiomyopathy (HCM), an inherited heart
disease, is the most common cause of sudden cardiac death in
young athletes. Successful diagnosis of mild HCM presents a
major medical challenge, especially in athletes with exercise-
induced hypertrophy that overlaps with HCM. This is due to
a wide spectrum of non-specific clinical parameters and their
complex dependencies. Recently, medical researchers pro-
posed multidisciplinary strategies, defining differential diag-
nostic scoring algorithms, with the goal of identifying which
parameters correlate with HCM in order to achieve faster
and more accurate diagnosis. These algorithms require ex-
tensive testing against large medical datasets in order to
identify potential correlations, and assess the overall algo-
rithmic quality and diagnostic accuracy.

We present a prototype data-parallel algorithm for im-
proving the diagnosis of mild HCM, by refining the set of
parameters contributing to the main diagnostic function. To
this end, we employ a rule-based, machine-learning approach
and develop an iterative MapReduce application for apply-
ing the diagnostic function on large data-sets. The core
component of the algorithm, including the diagnostic func-
tion, has been implemented in Java, Pig and Hive in order
to identify potential productivity gains by using a high-level
MapReduce language specifically for medical applications.
Finally, we assess the algorithmic performance on up to 64
cores of our Hadoop (version 0.20.1) enabled Beowulf clus-
ter, managing to achieve near-linear speedups while reducing
the overall runtime from over 9 hours to a couple of minutes
for a realistic dataset of 10,000 medical records.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
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1. INTRODUCTION
Hypertrophic Cardiomyopathy (HCM), an inherited heart

disease, is commonly acknowledged by the medical commu-
nity as the primary cause of sudden cardiac death (SCD)
during physical activity [9]. SCD of a young athlete is unar-
guably the most tragic event in sports, with an annual inci-
dence rate of 2.3 per 100,000 athletes [2]. Successful medi-
cal diagnosis is currently achieved by health screening, using
highly expensive and sometimes invasive procedures such as
gene testing and cardiac biopsy. This approach is very time
consuming as it is based on monitoring a wide spectrum
of clinical parameters with many complex dependencies be-
tween them. Especially in the case of athletes with “grey
zone”cardiac hypertrophy (overlap of the benign adaptation
to exercise training with HCM — as defined in Section 2.1),
the diagnosis is even more challenging as the cardiologists
have to differentiate between the malignant cases of par-
ticular clinical heterogeneous mild HCM and the exercise-
induced “athlete’s heart” [2, 15].

Today, medical experts focus their research efforts in de-
veloping state-of-the-art multidisciplinary strategies with the
aim to identify which medical parameters are related with
HCM in order to potentially achieve much faster and more
accurate diagnosis. A promising approach is the use of
novel differential diagnostic scoring algorithms in order to
efficiently detect HCM, particularly in “grey zone” cardiac
hypertrophy cases [12]. A major challenge behind the suc-
cessful development of such techniques is that HCM is not
only a highly complex heart disease, but also has a very low
prevalence in the available medical datasets. These two facts
converge to a need in using large-scale medical datasets in
order to test the differential diagnostic algorithms, to iden-
tify the correlation between the parameters and the disease,
and assess the overall algorithmic quality and accuracy.

The primary focus of this paper is the application of a pro-
totype, massively data-parallel, MapReduce [3] algorithm to
improve the diagnosis of mild HCM. This is a typical prob-
lem in the medical domain as it involves data-intensive com-
putations, high-dimensional data and unclear parameter de-
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pendencies [13]. The computational core is the calculation
of the correlations between the algorithmic score and known
cases of HCM. In an iterative, rule-based approach the algo-
rithm is improved building on a database of expert knowl-
edge. Our algorithm is implemented in Hadoop [20], an open
source MapReduce implementation provided by Apache. The
massive computational size that derives from applying the
algorithm on large-scale datasets justifies the choice for a
massively data-parallel implementation.

Our iterative rule-based approach is based on machine
learning [10, 1, 13]: learning MapReduce jobs are chained in
order to identify correlations between the given medical pa-
rameters and the HCM disease. Each MapReduce job in the
loop investigates only a carefully selected subset of the total
medical parameters. The selection of the parameter set is
automatic and is based on the results from previous MapRe-
duce iterations. This approach lessens the overall workload
as subsequent parameters can be discarded if they are found
unrelated. The development of the proposed algorithm was
based on medical data and domain expertise provided by
the Laboratory of Sports Medicine, Aristotle University of
Thessaloniki, Greece.

We developed the core component of the iterative learn-
ing algorithm in Java, Pig [11] and Hive [18] with the goal
to evaluate the ease-of-programming associated by using a
high-level language and to assess their suitability for medical
applications. Furthermore, we present comparisons between
two different domain knowledge based approaches: a näıve
brute force approach and an approach based on learning
MapReduce iterations. Finally, we evaluate the algorith-
mic performance on 64 cores of our Hadoop Beowulf cluster,
managing to achieve near-linear speedups while reducing the
overall runtime from over 9 hours to a couple of minutes for
a large-scale medical dataset of 10,000 clinical records. We
freely provide a well-documented for domain experts source
code in GitHub1 with the hope that it will enable other med-
ical researchers to get accustomed with MapReduce and use
it in their future research.

The remainder of the paper is organised as follows: Sec-
tion 2 contains background about the challenges in diag-
nosing HCM, a brief overview of the MapReduce execution
framework and a presentation of the Hadoop ecosystem; Sec-
tion 3 presents our diagnostic scoring function and its paral-
lelisation in MapReduce; Section 4 provides an in-depth dis-
cussion about the iterative learning MapReduce algorithm
we developed in order to increase the accuracy and efficiency
of the HCM diagnosis; Section 5 presents the extensive ex-
periments we conducted and the evaluation of our algorithm
on our Hadoop enabled Beowulf cluster; and Section 6 con-
cludes with a discussion about the contributions of this pa-
per, limitations and future work.

2. BACKGROUND

2.1 Challenges in diagnosing HCM
Diagnosing HCM is a challenging process, especially in

the case of athletes with “grey zone” cardiac hypertrophy:
an above average, 12–16 mm cardiac septum thickness that
overlaps with HCM. The main reason behind this is that
no established clinical, non-invasive, diagnostic criteria ex-
ist for distinguishing hypertrophies, such as the physiological

1https://github.com/pdeligia/mapred-hcm
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Figure 1: Difference in septum thickness between a
normal and a “grey zone” hypertrophic heart (based
on original illustration by Eric Pierce that is freely
available under a Creative Commons licence)

adaptation of the heart to exercise training and the patho-
logical cardiac hypertrophy (see Figure 1). Gene testing
and detraining are possible but not feasible options as they
are either highly expensive and not always informative or
require an athlete to stop training [2, 9].

Successful diagnosis in elite athletes can be even more
difficult, as the prevalence of HCM is extremely low [15].
It is suggested that 10-15% of HCM patients have a “grey
zone”cardiac hypertrophy, but the exact prevalence of HCM
in “grey zone” cardiac hypertrophy is currently unknown.
During the last two decades cardiovascular pre-participation
screening was performed in more than 22,000 young athletes
in the Sports Medicine Laboratory, Aristotle University of
Thessaloniki, Greece. HCM was diagnosed in only twenty
of those athletes [5].

To overcome these diagnostic challenges, researchers shift
their focus towards the development of novel multidisci-
plinary methods for diagnosing HCM by using mass pre-
participation screening. As an example, Pagourelias et al.
suggested a novel differential diagnostic scoring algorithm
comprised of indexes from multiple clinical examinations to
diagnose HCM in“grey zone”cardiac hypertrophy cases [12].
Such an algorithm, that takes into consideration the various
parameters that directly or indirectly play a role in the pres-
ence of HCM, could prove to be a feasible, efficient and in-
expensive tool for diagnosing HCM and identifying patients
with high SCD risk. Our diagnostic algorithm directly builds
on this expert knowledge.

2.2 MapReduce
The MapReduce framework, introduced by Google dur-

ing 2004, is a distributed programming model for analysing
internet-scale data sets in acceptable time bounds [3]. It en-
ables powerful large-scale data analysis, while negating the
data processing bottlenecks of the past. Today, MapReduce
is a key Cloud computing technology empowering hundreds
of industrial and academic projects. As an example of its
success, Google runs more than 100,000 MapReduce tasks in
a daily basis [4]. Although MapReduce is commonly used for
search engine indexing, data warehousing and log process-
ing, lately it has gained acceptance by the wider scientific
community and is being increasingly used in a wide range
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Figure 2: The MapReduce execution workflow. Map tasks are assigned for each input record. The map phase
results can be combined locally (reduce-like operation) to enhance the overall efficiency of MapReduce. The
intermediate results are then gathered by the reducers for the final aggregations. (based on work created and
shared by Google and used according to terms described in the Creative Commons 2.5 Attribution License)

of data-intensive applications such as genome analysis [14]
and medical research [19].

The MapReduce model is based on Map and Reduce, two
parameterised functions largely inspired by the map and re-
duce higher order functions in functional programming. The
power of MapReduce derives from the generality of its ab-
straction combined with a carefully tuned parallel imple-
mentation. Programmers no longer have to worry about all
the underlying complexities associated with large-scale par-
allelism (e.g., coordination and synchronisation of tasks).
They only need to define implementations of Map and Re-
duce and the run-time system will automatically parallelise
the MapReduce job by distributing the individual computa-
tional tasks among the available processing elements [3].

Figure 2 presents the overall MapReduce execution work-
flow. Initially, the input files are split into multiple chunks.
Afterwards, the master processor initialises the map phase
and assigns a map task for each input record. Map tasks
are executed in parallel on the available map workers. The
map task results can be optionally combined while they are
in memory (not yet stored in a local disk), thus raising the
overall efficiency as less disk read and writes will be required.
Finally, these intermediate results are gathered by the cor-
responding reducer workers and are aggregated to produce
the final results.

2.3 The Hadoop ecosystem
Hadoop2 [20] is an open source implementation of Google’s

MapReduce pattern. It is maintained by the Apache Soft-
ware Foundation and among its main code contributors are
major companies such as Yahoo!, Facebook and Cloudera.
The Hadoop ecosystem consists of a large number of sub-
projects (e.g., Pig and Hive) and a vibrant open source com-
munity that supports them.

Hadoop is accompanied by the Hadoop Distributed File
System (HDFS), a high-throughput storage system that is
responsible for distributing large-scale data sets across the
available computing nodes of a cluster. HDFS is an impor-
tant aspect of the Hadoop ecosystem as it also contributes

2http://hadoop.apache.org/

towards fault tolerance by replicating the available data sets
(either automatically or on-demand) and by providing a
heartbeat mechanism for checking if workers have failed.
Thus, if a cluster node fails during a MapReduce job (a
very common event in large clusters setups) the correspond-
ing data will not be lost but will be accessed from another
node [16].

Notably, the Hadoop ecosystem also includes Pig Latin [11]
and Hive QL [18], two high-level data-query languages that
aim to enhance productivity by providing powerful, general
purpose, programming language abstractions. Pig Latin, in-
troduced by Yahoo! in 2006, resides inside the Pig platform
and combines high level abstractions with a lower level pro-
cedural style, making it an ideal language for programmers
familiar with Java. Pig not only provides a wide range of
data manipulation functions (e.g. SORT, FILTER, GROUP
and JOIN), but also allows the programmers to embed their
own special purpose user-defined functions. Nowadays Pig
has been widely adopted by an increasing number of data
analysis companies, such as Twitter, and is widely used in
their every day data intensive tasks [8].

Hive QL, initially developed in Facebook, is an SQL-like
declarative language defined by Hive, a data warehouse plat-
form for Hadoop. Hive users can perform ad-hoc querying
that allows them to manipulate and analyse large-scale data
sets stored in an HDFS cluster. Similar to Pig, Hive also
provides great extensibility, as it allows the programmers to
use their own user defined functions. Hive style of program-
ming is closer to that of traditional database management
systems as it allows the definition of tables, columns and
records. Furthermore, Hive allows the programmer to ab-
stract over the defined schema through views, a method that
can potentially enhance query processing.

Recently, YARN3 (Hadoop version 0.23) was released, in-
troducing a complete overhaul of the Hadoop MapReduce
framework. With this major update, Hadoop is now ca-
pable of not only running classic MapReduce jobs but also
more complex patterns of computation, specified as directed
acyclic graphs of jobs (similar to Microsoft’s Dryad [7]).

3http://hadoop.apache.org/common/docs/r0.23.0/index.html
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YARN aims not only to achieve scalability towards hun-
dreds of thousands of cores that will probably become the
main high performance computing platform in the near fu-
ture, but also to enhance Hadoop as a general purpose data
parallel computing framework. YARN, though, is currently
in alpha testing, and thus not recommended for production
environments yet.

3. HCM DIAGNOSIS WITH MAPREDUCE
The technique we use to diagnose mild HCM is based on

previous work by Pagourelias et al. [12], who defined a di-
agnostic score for differentiating “grey zone” cardiac hyper-
trophy cases into physiologic and pathologic. We extend
this concept by prototyping a diagnostic scoring function in
Hadoop MapReduce for diagnosing mild HCM in large-scale
datasets of athletes with “grey zone” cardiac hypertrophy.
Towards this purpose, we cooperated with experts from the
Laboratory of Sports Medicine, Aristotle University of Thes-
saloniki, Greece, who provided the required medical data
and domain expertise. The data consisted of clinical results
from eleven non-invasive diagnostic tests (involving 35 med-
ical parameters in total) that were performed on 40 young
athletes with “grey zone” cardiac hypertrophy. Twenty of
them were diagnosed with HCM, confirmed by cardiac Mag-
netic Resonance Imaging. Six of these 20 athletes were also
found with high-risk factors for SCD. The HCM diagnosis
for the rest 20 athletes was negative. This is only the core
data initially used for designing the scoring function.

The diagnostic scoring function matches each of the 35
medical parameters against their established diagnostic value
ranges (cut-off limits), found with ROC curve analysis [21],
and their weights (measure of importance for the diagnos-
tic process). Table 1 presents a small sample of these pa-
rameters. Five out of the 35 parameters are medically ac-
cepted as high-risk factors for SCD in subjects with HCM [6].
These are: (i) personal history of unexplained syncope dur-
ing effort, (ii) family history for SCD, (iii) extreme left ven-
tricular wall thickness in echocardiogram, (iv) presence of
non-sustained ventricular tachycardia on 24-h Holter elec-
trocardiographic recordings and (v) blood pressure decrease
or inadequate increase during upright exercise.

The result from mapping the scoring function against the
input medical dataset is two intermediate vectors of values,
representing the contribution of one parameter to the over-
all score. The first vector encompasses the high-risk SCD
parameters, the second vector encompasses all parameters.
These values are calculated based on the corresponding pa-
rameters’ weights and cut-off limits: if the value of a medical
parameter is found above (or below accordingly) its cut-
off limit, it will add its weight in the corresponding vector,
else it will add a 0. Afterwards, the values in each vector
are summed, resulting into two distinguishable intermediate
scores (high-risk and general score). As an example, a med-
ical record that includes findings of all five high-risk SCD
factors will have a high-risk score of 5, whereas a medical
record without high-risk SCD findings will have a high-risk
score of 0. The high-risk and the normal scores are then
summed into an overall score, effectively assessing the HCM
and SCD risk in the corresponding medical record.

The positive diagnosis of HCM is confirmed if the overall
score is equal or greater than 23. Furthermore, a diagnosis
results in high-risk SCD findings when the high-risk score is
equal or greater than 1. Therefore, the diagnostic scoring

Table 1: Sample of HCM related medical parame-
ters with their cut-off limits and weights.

Medical Parameter Cut-Off Limit Weight

Number of symptoms > 1 2

Positive family history (y/n) > 0 2

Pathological ECG > 1 2

IVS (mm) > 13.52 1

pVO2 (ml/kg/min) < 49.67 2

BNP (pg/ml) > 9.22 2

function uses the high-risk score and the overall score, in or-
der to classify the medical records into: HCM and high-risk
SCD (overall score ≥ 23 and high-risk score ≥ 1); high-risk
SCD without HCM (overall score < 23 and high-risk score
≥ 1); mild HCM (overall score≥ 23 and high-risk score = 0);
and healthy with “grey zone” cardiac hypertrophy (overall
score < 23 and high-risk score = 0).

Implementation aspects:
Our implementation for classifying large-scale datasets into
pathologic and physiologic cases exploits massive data par-
allelism provided by the MapReduce pattern. The mapper
function uses the above diagnostic scoring function. De-
pending on the outcome of each map task, one of the afore-
mentioned classifications is chosen as the map key and the
value is assigned with the integer 1. Importantly, multi-
ple map outputs with the same key can effectively be com-
bined by the combiner, thus reducing the overall computa-
tional size that the performance-critical reducer has to per-
form. The reducer function computes the component-wise
sum over a four-tuple of all possible classes. It is important
to mention that the reduce phase is based on unequal load
balancing (much more healthy records than unhealthy in a
dataset based on the general population), but this does not
hinder performance as the reduction is very cheap compared
to the mapping.

4. IMPROVING THE HCM DIAGNOSIS
The accurate diagnosis of mild HCM in“grey zone”cardiac

hypertrophy cases is of critical importance as it can lead to
the prevention of sudden cardiac death incidents. Although
the above diagnostic scoring function provides an accurate
diagnosis when tested against the initial small-scale dataset
(40 medical records), for much larger datasets (> 103 medi-
cal records) there is loss of 10-20% accuracy. Domain experts
believe there are two main reasons behind this: first, many
of the medical parameters required for successful diagnosis
of HCM do not have completely understood dependencies
between them and they need to be taken into account to
gain higher diagnostic accuracy; and second, the artificial
large-scale medical datasets we used for the experimentation
(created in cooperation with medical experts) can showcase
some extreme — but possible — combinations of medical
values that can cause uncertainty in the classification.

Our approach towards providing a more feasible and accu-
rate diagnosis of mild HCM is to use optimisation techniques
based on machine learning [10, 1, 13], in particular a rule-
based approach, in order to identify the relevant combina-
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Figure 3: Iterative MapReduce learning (left) — MapReduce job during each learning iteration (right).

tions of medical parameters that: (i) can successfully classify
a large-scale medical dataset into pathological and physio-
logical cases; (ii) satisfy any known or speculated depen-
dencies between the parameters; and (iii) return acceptable
medical results, i.e., medical records classified as unhealthy
can not be more than 0.1–0.2% of the overall dataset. To
achieve this efficiently, our algorithm goes through a number
of learning MapReduce iterations: each iteration improves
the parameter set based on the results from the previous
MapReduce jobs and based on a set of rules encoding likely
dependencies between some parameters.

Conceptually, the learning algorithm iterates over a set of
potentially relevant parameters that should be considered
by the diagnostic function, starting with those identified in
the core diagnostic function in Section 3. Based on this
set, a sequence of rules is applied, generating a modified
parameter set. Each rule in the sequence is of the form
p← p1⊕· · ·⊕pn, where p, p1, . . . , pn are medical parameters
and ⊕ is a boolean combinator, one of: logical and , logical
or. Thus, the right hand side represents a logical formula
that is true, iff the combination of parameters is contained
in the current parameter set. Iff the formula is true, the
parameter on the left hand side is added to this set.

The implementation operates on two levels as shown in
Figure 3. On the outer level (left hand side) the algorithm
iterates over the parameter set and in the inner level (right
hand side) the algorithm runs MapReduce jobs, applying the
diagnostic function. Initially, the learning algorithm creates
a MapReduce job configuration object that includes all the
user defined dependencies between the medical parameters
(Step 1 in Figure 3). After the job configuration has been
successfully defined and the medical parameters to be inves-
tigated have been included in the MapReduce input (step 2
in Figure 3), the MapReduce computation can begin (Step 3
in Figure 3). While the iterations of our learning algorithm
are executed in a sequential fashion, the actual MapReduce
computation is massively parallel and well-tuned for execu-
tion in large-scale Hadoop clusters. The MapReduce job has
three inputs: the job configuration; the small-scale medical
dataset of 40 medical records used for validation; and the
large-scale medical dataset stored in HDFS.

The iterative structure of the algorithm is problematic
from a performance point of view, because it introduces
synchronisations between the iterations, significantly deteri-
orating the available parallelism. Indeed we observed fairly
poor performance in an initial, straightforward implemen-
tation. To overcome this problem, we had to increase the
computational amount performed in one MapReduce iter-
ation, without losing the learning aspect of the algorithm.
We achieve this by investigating all possible permutations
of parameters from the same potential parameter set in one
iteration. This approach lessened the relative overhead as-
sociated with initialising a Hadoop job in each iteration,
and led to significant performance gains as showcased in the
evaluation section.

The map phase, thus, proceeds by generating all possible
combinations of the parameters defined in the job configu-
ration. Then, in a qualifying step, the diagnostic scoring
function is applied on the small-scale medical dataset for
each combination to filter out the combinations that do not
diagnose HCM correctly. Finally, in a classification step,
the diagnostic scoring function is applied to the large-scale
dataset to classify the medical records. At the end of the
map phase, the classified medical records (for each validated
combination of medical parameters) are sent to the reducer
as intermediate outputs.

The reduction phase begins with the reducer calculating
the sum of the medical records that were classified as patho-
logical for each potential combination of parameters. This
sum is expected by the medical experts to be between 0.1–
0.2% of the large-scale medical dataset. Thus, whichever
combination of parameters does not achieve the expected
ratio is filtered out. The output of the reduce phase is the
list of all combinations of parameters that achieved the ex-
pected ratio (Step 4 in Figure 3).

In order to guarantee termination of the iterations and
to avoid duplication of work, the implementation keeps a
record of all parameter sets seen so far (Step 5 in Figure 3).
Since this record increases in each iteration, and is finite,
termination is guaranteed. Using the successful parameter-
sets as input, the given rule-set is interpreted, delivering
a new set of parameters that becomes input to the next
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MapReduce iteration (Step 7 in Figure 3). Finally, when
the iterative MapReduce learning loop terminates (Step 6
in Figure 3), the application ends by returning as results all
possible combinations of parameters that achieve the three
aforementioned criteria (Step 8 in Figure 3).

As a baseline for our performance comparisons, and in
order to assess the effectiveness of our learning approach,
we also provide the option for brute-force execution of our
algorithm. If the user decides not to provide any dependen-
cies, the learning algorithm will not perform any iterations,
and will attempt to investigate all possible combinations of
parameters in a single MapReduce job. This brute-force
approach, though, suffers one major problem: the compu-
tational size for the map phase increases exponentially with
the number of investigated parameters. In contrast, by pro-
viding parameter dependencies, the learning algorithm can
split the workload into multiple iterations providing much
faster results as presented in the evaluation section.

5. EVALUATION
We implemented the MapReduce iterative learning algo-

rithm in Hadoop 0.20.1. The iterative learning components
were developed in Java, while the diagnostic scoring func-
tion was also developed in Pig 0.8.1 and Hive 0.7.0, two
very popular high-level data-query languages for develop-
ing Hadoop MapReduce applications. For the evaluation,
we executed our code on the Beowulf cluster of Heriot-Watt
University, Edinburgh, UK, running Cloudera’s Hadoop dis-
tribution. Each node of the Hadoop cluster consisted of 4
cores at 2.0 GHz, 12 GB of RAM and 150 GB of available
disk space. We conducted the experiments using up to 20
nodes (4 tasks per node) of our cluster during off-peak hours
in order to minimise interference of external processes.

Language comparison:
For the comparison of the Java, Pig and Hive versions of the
diagnostic scoring function, we used 2 ∗ 108 auto-generated
realistic medical records (roughly 30 GB). In order to en-
sure the validity of our data, we compared the medical re-
sults with the original set of 40 medical records provided by
the Laboratory of Sports Medicine, Aristotle University of
Thessaloniki, Greece.

Figure 4 plots the speedup performance for each language
implementation (Java, Pig and Hive) of the diagnostic scor-
ing function. The figure shows that for all configurations,
Java performed much better than Pig and Hive. For exam-
ple, the Java version of the function using 80 cores achieved
a speedup of 61.15, whereas both Pig and Hive were found
slower than Java by a factor of approximately 1.27. This
finding was expected because although Pig and Hive, as
higher level languages, provide many programming abstrac-
tions leading to ease-of-programming, Java is usually better
for raw performance and optimisations [17].

We can further notice in Figure 4 that although Hive ini-
tially yields higher speedups than Pig, the gap gradually
closes between the two implementations as the number of
cores increases. After 64 cores this gap is eliminated, and
from that point and onwards both languages achieve the
same speedup performance. While investigating for further
differences between the performance of the three languages,
one could notice that although Pig and Hive exhibit a steady
speedup growth, this is not the case with Java, which ex-
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Figure 4: Speedups for each implementation (Java,
Pig and Hive) of the diagnostic scoring function.

hibits irregular speedup growth trends, especially between
32 and 64 cores.

Concluding the language comparison between Java, Pig
and Hive, we present the number of source code lines that
were required for each implementation of the diagnostic scor-
ing function. The Pig implementation required 72 lines of
source code, which is only 55% of the corresponding Java
version (132 lines of source code). Hive delivers the short-
est version of the three with only 68 lines of source code.
This result was expected because Pig and Hive bring many
high-level abstractions to the table, which potentially leads
to easier constructed parallel MapReduce applications.

Iterative learning algorithm:
For the evaluation of the iterative MapReduce learning al-
gorithm, we compare three different learning scenarios, each
realised with its own rule-set: (i) no predefined dependencies
between the medical parameters leading to a single MapRe-
duce job (“brute-force learning”approach); (ii)“shallow learn-
ing” of the medical parameters leading to two MapReduce
learning iterations; and (iii) “deep learning” of the medical
parameters leading to three MapReduce learning iterations.
The motivation for using these artificial rule-sets derived
from our extensive discussions with domain experts. Finally,
we used an artificial dataset of realistic size: 10,000 medical
records which is of similar scale with the 22,000 large-scale
dataset monitored by the Sports Medicine Laboratory —
see Section 2.1. In this setup, a single core MapReduce ex-
ecution was slightly over 9 hours, thus, feasible to complete
overnight while producing significant results.

Table 2 summarises the end-to-end runtime results for
each of the three aforementioned learning scenarios from 1 to
64 cores of the Hadoop cluster. We can easily observe that
as the number of learning iterations increases, the end-to-
end execution time significantly drops. As an example, the
brute-force learning scenario resulted in an overall runtime
of 33,598 seconds for a single-core execution and 626 seconds
for 64 cores. As expected, the learning algorithm performed
much faster under three MapReduce learning iterations: 345
seconds end-to-end runtime on 64 cores and 16,233 seconds
for single-core execution, justifying the design of our al-
gorithm. Despite the more challenging nature of iterative
MapReduce jobs these results make intuitive sense, because
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Figure 5: Speedup (left) and logarithmic runtime (right) comparisons for the three rule-sets.

Table 2: End-to-end runtime and speedups for all
three rule-sets.

Learning Approach Runtime (sec) Speedup
(Rule-Set) 1C 64C 16C 32C 64C

Brute-force 33598 626 15.34 28.89 53.67

Shallow Learning 22459 444 15.17 28.07 50.58

Deep Learning 16233 345 14.72 26.79 47.05

by introducing multiple learning iterations only a carefully
chosen set of medical parameters is investigated instead of
the full set, thus the overall computational size is reduced
by a large margin. Most notably, even when using a deep-
learning rule-set with 3 iterations, the overall speedup of the
iterative algorithm remains high, 47.05 on 64 cores.

Figure 5 plots the speedups for all three rule-sets covering
all iterations. Although the runtimes vary widely between
the rule-sets, as can be seen from the logarithmic scale of the
runtime graph on the right hand side, the speedups remain
high, above 40 on 64 cores, for all iterations. Each rule-set
leads to a different number of MapReduce iterations, with
each iteration processing a progressively increasing number
of medical parameters. The brute-force approach processes
all parameters within a single, compute-intensive iteration
and therefore achieves the highest degree of parallelism but
also the highest total runtime.

Studying the left graph of Figure 5 in more detail, one
could observe that all MapReduce jobs achieve almost ideal
speedups up to 16 cores of the Hadoop enabled Beowulf clus-
ter. From that point onwards speedup performance slightly
drops for all MapReduce jobs, but still shows good scala-
bility throughout the experiment. One performance critical
aspect of the iterative MapReduce implementation is the
relative workload inside the individual iterations and their
corresponding speedups. Here we note that, while the best
speedups are achieved for the largest parameter sets (e.g.,
brute force and second iteration of shallow learning), even
the smaller sets (e.g., first iteration of deep learning) yield
comparable speedups and remain scalable. It is also impor-
tant to mention that the execution times for the iterative
learning scenarios are significantly faster, as depicted in the
right graph of Figure 5. As an example, the single core

runtime for the second iteration of the shallow learning sce-
nario was found faster than the corresponding runtime of
the brute-force scenario by a factor of 1.89. Although the
difference drops exponentially as the parameter sets become
smaller, it is still noticeable: as an example, 4702 seconds
were required for the first iteration of the shallow learning
scenario, whereas 3547 seconds was the runtime for the sec-
ond iteration of the deep learning scenario.

Concluding, the aforementioned experimentation in our
Hadoop enabled Beowulf cluster demonstrated that algorith-
mically our learning algorithm gains a significant improve-
ment in end-to-end parallel execution time by dividing the
overall computational size into multiple learning iterations,
without sacrificing much scalability and speedup efficiency.

6. DISCUSSION
In this paper, we presented a prototype MapReduce [3]

iterative learning algorithm for improving the diagnosis of
mild HCM, an inherited cardiac disease, which is a major
cause of sudden cardiac death in young athletes with “grey
zone” cardiac hypertrophy [9]. The MapReduce iterative
learning algorithm uses a rule-based approach inspired by
machine learning [10, 1, 13] to improve the parameter set
contributing to the main diagnostic algorithm, thus realising
an iterative MapReduce structure that divides the computa-
tional workload into multiple learning iterations and reduc-
ing overall complexity. The MapReduce distributed com-
puting framework is used to apply the diagnostic function
on large data-sets and to classify the results. This mas-
sive data-parallelism, combined with machine learning tech-
niques, brings many new possibilities for non-invasive diag-
nosis of mild HCM. Our work presents a first step towards
this direction.

The core of our MapReduce iterative learning algorithm is
a diagnostic scoring function that classifies medical records
into either physiological or pathological. As a language com-
parison of scripting languages for Hadoop, in the context of
medical computing, we developed this function in several
Hadoop MapReduce languages: Java, Pig and Hive. Since
Pig and Hive provide higher-level abstraction mechanisms,
the programming effort is lessened: the Pig and Hive pro-
grams are 45–49% shorter than the Java version (measured
in lines of source code). However, this gain in programmer
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productivity comes at the price of lower raw performance,
achieving speedups of 61.15 for Java, 48.06 for Pig, and 48.08
for Hive, on 80 cores of our Beowulf Cluster. All versions,
though, exhibit good scalability up to the maximal number
of cores. Recent, better tuned, versions of Pig and Hive
though, show the potential for this gap to narrow [17].

In experiments with up to 64 cores, the algorithm suc-
ceeds to reduce the end-to-end runtime from several hours
on single core Hadoop setups to just a few minutes on our
Hadoop enabled Beowulf cluster by just exploiting massive
data parallelism. Our benchmarking proves that the mul-
tiple MapReduce iterations achieve significant performance
gains over a brute force learning. The end-to-end runtime
of a deep-learning rule-set, involving three MapReduce iter-
ations, was 1.81 times faster than a brute force approach.
In general, even with the most challenging iterative MapRe-
duce job, the learning algorithm achieved speedups between
47.05 and 53.67 on a high configuration of 64 cores of our
Hadoop enabled Beowulf cluster.

Medical applications are often associated with the process-
ing of massive amounts of high-dimensional clinical data [13].
Patterns extracted out of such datasets, based on established
or speculated dependencies, empower the medical commu-
nity with new knowledge about how to accurately diagnose
complex diseases. These results from experimenting with
our prototype iterative learning algorithm demonstrate that
MapReduce is highly relevant for achieving this purpose.
Our implementation achieves a modular design, by sepa-
rating the expert knowledge on dependencies in an easily
tuneable rule-set. Therefore our framework should be appli-
cable to a wider class of medical diagnostic problems that
require data-intensive computations. In particular, it meets
the medical experts’ demands for feasible and accurate di-
agnosis of mild HCM in athletes.

In the near future we plan to evaluate our iterative learn-
ing algorithm on YARN, the next generation of the Hadoop
distributed framework that was recently released for alpha
testing. The decoupling of Hadoop’s JobTracker into multi-
ple modules is very promising towards achieving even greater
scalability across hundreds of thousands of computing nodes.
For our future benchmarking we plan to increase the size of
our experimental medical datasets and use a larger clus-
ter, potentially Amazon’s EC2 or Microsoft’s Azure (which
recently announced support for Hadoop). Access to such
resources and further experimentation could provide invalu-
able insight on the potential of MapReduce for large-scale
medical research.
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