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Implementing and Evaluating
Candidate-Based Invariant Generation

Adam Betts, Nathan Chong, Pantazis Deligiannis, Alastair F. Donaldson™, and Jeroen Ketema

Abstract—The discovery of inductive invariants lies at the heart of static program verification. Presently, many automatic solutions to
inductive invariant generation are inflexible, only applicable to certain classes of programs, or unpredictable. An automatic technique
that circumvents these deficiencies to some extent is candidate-based invariant generation, whereby a large number of candidate
invariants are guessed and then proven to be inductive or rejected using a sound program analyzer. This paper describes our efforts to
apply candidate-based invariant generation in GPUVerify, a static checker for programs that run on GPUs. We study a set of 383 GPU
programs that contain loops, drawn from a number of open source suites and vendor SDKs. Among this set, 253 benchmarks require
provision of loop invariants for verification to succeed. We describe the methodology we used to incrementally improve the invariant
generation capabilities of GPUVerify to handle these benchmarks, through candidate-based invariant generation, using cheap static
analysis to speculate potential program invariants. We also describe a set of experiments that we used to examine the effectiveness of
our rules for candidate generation, assessing rules based on their generality (the extent to which they generate candidate invariants),
hit rate (the extent to which the generated candidates hold), worth (the extent to which provable candidates actually help in allowing
verification to succeed), and influence (the extent to which the success of one generation rule depends on candidates generated by
another rule). We believe that our methodology may serve as a useful framework for other researchers interested in candidate-based
invariant generation. The candidates produced by GPUVerify help to verify 231 of the 253 programs. This increase in precision,
however, makes GPUVerify sluggish: the more candidates that are generated, the more time is spent determining which are inductive
invariants. To speed up this process, we have investigated four under-approximating program analyses that aim to reject false
candidates quickly and a framework whereby these analyses can run in sequence or in parallel. Across two platforms, running
Windows and Linux, our results show that the best combination of these techniques running sequentially speeds up invariant
generation across our benchmarks by 1.17x (Windows) and 1.01x (Linux), with per-benchmark best speedups of 93.58 x (Windows)
and 48.34x (Linux), and worst slowdowns of 10.24 x (Windows) and 43.31x (Linux). We find that parallelizing the strategies marginally
improves overall invariant generation speedups to 1.27x (Windows) and 1.11x (Linux), maintains good best-case speedups of 91.18 x
(Windows) and 44.60x (Linux), and, importantly, dramatically reduces worst-case slowdowns to 3.15x (Windows) and 3.17x (Linux).

Index Terms—Formal verification, GPUs, invariant generation

*

INTRODUCTION

AN invariant is a property that captures program behav-
iors by expressing a fact that always holds at a particu-
lar program point. Invariants are vital to static verification
tools for reasoning about loops and procedure calls in a
modular fashion [1]. Such reasoning requires proving that
invariants are inductive. In the case of loops this means that
they hold on entry to the loop (the base case), and that
if they hold at the start of an arbitrary iteration of the loop,
they also hold at the end of the iteration (the step case).

The automatic discovery of inductive invariants is a chal-
lenging problem that has received a great deal of attention
from researchers [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12]. A flexible solution is offered by candidate-based invariant
generation [5], [13] whereby a large number of candidate
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invariants (henceforth, just candidates) are speculated
through simple rules (e.g., based on patterns observed in the
abstract syntax tree of a program) and are then checked
using formal verification methods. The output is a subset of
the candidates that can be proven to hold; if all candidates
are rejected then the weakest invariant, true, is returned.
Although candidate-based invariant generation is popu-
lar in several static verification tools, no general methodol-
ogy exists to guide the implementation and evaluation of
such methods. We address this problem in this paper by
describing the systematic manner in which we incorporated
new candidate generation rules into GPUVerify [14], a static
verification tool for programs that have been designed to
run on Graphics Processing Units (GPUs), and by proposing
a set of questions that allow rules to be comprehensively
evaluated, irrespective of the application domain. Our eval-
uation criteria broadly assess whether rules produce induc-
tive invariants, whether there are dependencies among
rules, and the extent to which rules help to verify programs.
We applied the proposed evaluation criteria to GPUVer-
ify using a set of 383 GPU programs collected from a variety
of sources. This endeavor led to three interesting discover-
ies. First, the rules as a whole have greatly increased
the accuracy of GPUVerify, helping to verify 231 out of
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253 GPU programs where loop invariants are required.
Second, most rules in GPUVerify are independent of each
other: if a rule produces inductive invariants, then the proof
of those candidates can be established in isolation from
inductive invariants of other rules. Third, some rules in
GPUVerify are redundant because they no longer produce
candidates that are essential to verify a single GPU pro-
gram: they have been superseded by more general rules.

Increased precision, however, has come at a price: GPU-
Verify has become less responsive with the introduction of
more rules, because the more candidates that are specu-
lated, the more time is spent determining whether those
candidates are actual inductive invariants. In one specific
case, a GPU program that verified within 10 minutes when
no invariants were speculated, could no longer be verified
within 30 minutes due to the overhead of candidate-based
invariant generation. To counter the performance lag, we
have investigated four under-approximating program analy-
ses whose aim is to refute false candidates quickly, and we
have devised a framework where several of these analyses
can run either in sequence or in parallel. Evaluating these
techniques on two different machines, running Windows
and Linux, respectively, we discovered that:

e In the best case, accelerating invariant generation
using a sequential combination of techniques sped
up invariant generation performance by 93.58x
(Windows) and 48.34x (Linux).

e In the worst case, attempts at sequential acceleration
did not pay off, slowing down invariant generation
by 10.24x (Windows) and 43.31x (Linux).

e Opver all benchmarks, sequential acceleration sped
up invariant generation by 1.17x (Windows) and
1.01x (Linux).

e DParallelizing our strategies maintained good best
case speedups of 91.18x (Windows) and 44.60x
(Linux), while reducing worst-case slow downs to
3.15x (Windows) and 3.17x (Linux). The key benefit
of parallelization here is that it prevents a runaway
under-approximating analysis from severely delay-
ing invariant discovery.

e Opverall, parallelization gave a marginally better
speedup across our benchmarks, of 1.27x (Win-
dows) and 1.11x (Linux).

The rather different results obtained for these distinct
platforms emphasize the importance of accounting for mea-
surement bias [15]: the operating system and programming
language runtime used to conduct program analysis can
have a noticeable impact on performance results.

In summary, our main contributions are:

1) An account of a systematic approach to manually
deriving domain-specific rules for candidate-based
invariant generation. While the rules are specific to
the context of GPU kernel verification, we believe
the principled approach we have taken in their dis-
covery can be transferred to other domains.

2)  An experimental study of generality, hit-rate, worth,
and influence of these candidate generation rules. We
believe that the metrics we present and our experi-
mental method can help to guide other researchers in

assert ¢; // (base case)
havoc modset (B) ;
while (c) assume ¢;
invariant ¢ { if (c) |
B; B;
} assert ¢; // (step case)
assume false;

}

Fig. 1. The loop cutting transformation [16] used by GPUVerify. The loop
on the left is transformed into the loop-free sequence of statements on
the right.

evaluating candidate-based invariant generation
techniques.

3) General strategies for accelerating candidate-based
invariant generation via under-approximating pro-
gram analyses, the application of parallel processing
to combine multiple strategies, and a large experi-
mental evaluation of these methods.

The remainder of the paper is structured as follows.
Necessary background material is provided in Section 2. In
Section 3, we outline some basic properties of the GPU pro-
grams in our evaluation set and describe how preconditions
for each GPU program were procured. The methodology to
implement and to evaluate candidate-based invariant gen-
eration appears in Section 4, including new metrics for eval-
uation which we used to assess the candidate generation
rules we added to GPUVerify. The measures undertaken to
boost performance and an evaluation thereof are contained
in Section 5. We survey related work in Section 6 and con-
clude in Section 7.

2 BACKGROUND

We give essential background on loop invariants and candi-
date-based invariant generation in Sections 2.1 and 2.2. We
then provide background on GPU kernels in Section 2.3,
and give an overview of the GPUVerify tool for analyzing
GPU kernels, explaining how GPUVerify incorporates
candidate-based invariant generation, in Section 2.4.

2.1 Inductive Loop Invariants

A standard approach to reasoning about programs contain-
ing loops, stemming from early work by Floyd [1], is to apply
a loop cutting transformation, replacing each loop with a loop-
free sequence of statements that over-approximates the
effects of the loop on the program state. We recap the process
of reasoning about a program via loop cutting, which is
described in more technical detail elsewhere (e.g., [16]).

To cut a loop, we need a property—a loop invariant—
that holds each time the loop head is reached during
execution.

The transformation is depicted in Fig. 1: the input loop
and its invariant ¢ on the left are turned into the loop-free
sequence on the right. In the transformed sequence, the loop
invariant is checked in two places. The first check ensures
that the property is satisfied on entry to the loop (the base
case), while the second check ensures the property is main-
tained by each execution of the loop body (the step case); if
both can be proven, then the invariant is inductive. Observe
that the step case requires the program to be in an arbitrary
state which already satisfies the loop invariant; this estab-
lishes the induction hypothesis. The arbitrary state is
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i := 0;
j o= 05
while (i < 100)

invariant j = 2¢;
invariant 7 < 200;
{
=i+ 1;
joi=3+ 2;
}

assert j = 200;

Fig. 2. An example code snippet annotated with loop invariants that allow
proving the assertion j = 200.

obtained by first assigning a non-deterministic value to each
variable possibly modified in the loop body (using the havoc
modset (B) statement), and then assuming the loop invari-
ant (using the assume ¢ statement). If the loop guard evalu-
ates to true, the step case then checks that no assertions fail
during execution of the loop body B, and that execution of
the body results in a state that satisfies the loop invariant.

2.1.1 Example

To illustrate inductive loop invariants, consider the anno-
tated code snippet in Fig. 2, which repeatedly increments
the variables i and j.

The first invariant, j = 2i, is inductive in isolation. The
invariant holds trivially on entry to the loop when i = j =0
(the base case), and is maintained by the loop body pro-
vided that the invariant and loop guard hold before the
body executes (the step case)

J=2 Ai<100= (j+2)=2(i+1).

The second invariant is not inductive in isolation since
Jj <200 and ¢ < 100 do not imply (j+ 2) < 200. However,
the invariant is inductive in conjunction with j = 2i

F<200 A j=2i A i< 100 = (j+2) < 200.

The two invariants together with the negation of the loop
guard suffice to prove the assertion near the bottom of Fig. 2

j=2 A j<200 A i>100 = j = 200.

2.2 Candidate-Based Invariant Generation
GPUVerify employs candidate-based invariant generation
to compute inductive loop invariants automatically. The
technique speculates a finite set of potential invariants,
called candidates, that must be checked to ensure that they
are, in fact, inductive invariants. Checking is done by means
of the Houdini algorithm [5], which returns the unique,
maximal conjunction of candidates that form an inductive
invariant (see [13] for a proof of this property). The conjunc-
tion may be over the entire set of candidates (if all are
proven to be inductive), but is more likely to be over a sub-
set of these, due to some speculated candidates being false,
or being true but not inductive. In the worst case, the maxi-
mal conjunction returned by Houdini is over the empty set,
meaning that the trivial invariant, true, is returned.

We provide some more details regarding the two phases
of this approach.

2.2.1 Phase One: The Guess Phase

This phase supplies the candidates for a given program.
Guessing is domain specific and is free to use any static,
dynamic, or hybrid technique. A simple example is the use
of syntactic checks that generate candidates based on pat-
tern matching in the abstract syntax tree. Importantly, this
phase can be aggressive, generating a large set of candi-
dates: false candidates cannot introduce unsoundness
because the Houdini algorithm (in the check phase) will
simply refute them. Section 4 discusses the kinds of guesses
performed by GPUVerify.

2.2.2 Phase Two: The Check Phase

Beginning with a full set of candidates, Houdini removes
candidates that cannot be proven, until a fixpoint is reached.
A candidate may fail to be proven because the candidate is
actually false, or because, despite being true, it cannot be
proven to be inductive. We refer to a candidate that Houdini
removes as unprovable, and say that Houdini refutes such a
candidate. We say that a candidate that forms part of the
maximal conjunction returned by Houdini is provable. Here,
“unprovable” simply means that the invariant could not be
proven to be inductive with respect to the current set of can-
didates. If a candidate is true but unprovable, the candidate
might become provable in the context of a larger set of can-
didates; this is because, as illustrated by the example of
Section 2.1, proving that an invariant is inductive can hinge
on the availability of other supporting invariants.

Houdini is sound, deterministic, and terminating, assum-
ing each call to the underlying SMT solver returns (which is
not guaranteed if the logic used to encode verification con-
ditions is undecidable). For single-procedure programs,
such as those analyzed by GPUVerify, the number of SMT
solver calls is proportional to the number of candidates
because Houdini only considers conjunctions of candidates.

Let us demonstrate Houdini using Fig. 3, which gives a
program that repeatedly cycles the values 1,2,3 around the
variables z, y, z. We assume the guess phase has speculated
the candidates Cj through Cj. Houdini must now compute
the maximal inductive invariant that is a conjunction of a
subset of these candidates. The figure shows how the set of
candidates evolves during each iteration of the algorithm.
During the first iteration, Houdini removes C; and Cj
because they do not hold on loop entry (the base case). No
further candidates can be removed during this iteration: in
the base case all other candidates hold, and the step case
holds vacuously because candidates Cy and C}, which are
mutually inconsistent, are both assumed to hold. During
the second iteration, the candidates C; and Cj are refuted
because they are not preserved by the loop. To see why Cj
is not preserved, consider a state in which =1 and
y = z = 2: this state satisfies Cs on loop entry, but not after
execution of the loop body. During the third iteration, the
candidate C, is refuted. This candidate could not be
removed until C was removed since assuming C; allowed
C, to be preserved by the loop. This illustrates dependen-
cies between candidates, where the refutation of a specific
candidate is only possible after refutation of certain other
candidates. A fixpoint is reached during the final iteration:
the remaining candidates, C5 and C5, form an inductive
invariant, and Houdini returns Cy A Cs.
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i = 0;
x = 1;
y = 2;
z = 3; fixpoint
while (i < 10000) ">nc>ffurﬁher
candidate Cp:¢=0; Coy C, refutations
candidate C1:1#0; C,
candidate C3:0 < i; > > > —» returns
- . : c fut C fute C refute C invari
candidate C3:0 < i; 2 refute 2 re 2 2 invariant
candidate Cy:¢ < 10000; Cq €G3 Co Cs Cy CynCyq
candidate Cj5:¢ < 10000; Cy c, Cy
candidate Cps:x #y;
{ ' Cs Cs Cs Cs
temp := x; Ce C
L A o . . .
v = z; Initially Iteration | Iteration 2 Iteration 3
z := temp;
i =1+ 1;

}

Fig. 3. An example program and a run of the Houdini algorithm, showing the candidates refuted at each iteration until a fixpoint is reached.

It is worth noting that candidate Cj is an invariant of the
loop; it is refuted by Houdini because it is not inductive, as
described above. If the candidates = # z and y # z also had
been provided initially then, because these candidates are
mutually inductive with Cg, all three would have been
returned by Houdini, in addition to C5 and Cs.

2.3 GPU Kernels

A GPU kernel is a program, typically written in CUDA [17] or
OpenCL [18], that enables a general-purpose computation to
be offloaded to a GPU.! At run time, the kernel is launched
with a thread configuration that specifies both the number of
threads to run and the organization of the threads in blocks of
size blockDim, where the blocks form a grid of size gridDim
(both blockDim and gridDim may be multi-dimensional).
Each thread is parameterized by its thread and block identi-
fiers (threadIdx and blockIdx), which allow it to compute
memory addresses and make branch decisions unique to that
thread. Threads have access to thread-private memory and
memory regions that are shared at the block and grid level.
Threads in the same block can communicate through shared
memory and synchronize using barrier operations.

GPU kernels are susceptible to data races and barrier diver-
gence, which are programming errors. A data race occurs
when two different threads access the same location in
shared memory, at least one access is a write, and there is
no intervening synchronization. Barrier divergence happens
when threads reach distinct syntactic barriers or when the
same barrier is reached under divergent control flow. Vari-
ous techniques have been proposed to assess whether GPU
kernels are prone to, or free from, these errors. We next
describe the GPUVerify tool, which is the focus of study in
this paper, and implements one of these techniques. We sur-
vey related approaches in Section 6.

2.4 GPUVerify
The GPUVerify tool [14], [19], [20] has been designed to auto-
matically prove absence of data races and barrier divergence

1. Throughout the paper we present examples using notation from
the CUDA programming model, though the kernels that we study are
written in both CUDA and OpenCL.

for CUDA and OpenCL kernels. The tool takes a kernel
source file as input, and generates a sequential program in
the Boogie intermediate verification language [21] annotated
with automatically-generated assertions. The translation
from kernel to Boogie program is performed in manner such
that if the Boogie program is free from assertion failures then
the original kernel is free from data races and barrier diver-
gence. The translation is described elsewhere in a tutorial
fashion [22] and via a formal operational semantics [19], [20].
It involves generating a program that models the execution
of a kernel by a pair arbitrary threads according to a single,
fixed schedule. Instrumentation variables are used to detect
races between the two threads, and the possible effects of
additional threads are over-approximated via abstraction.
The barrier-synchronous nature of the GPU programming
model means that proving correctness of the single-schedule
sequential program for all possible choices of thread identi-
ties suffices to show that the kernel is free from data races
and barrier divergence for all thread schedules. This allows
well-established techniques for proving correctness of
sequential programs to be leveraged in order to prove race-
and divergence-freedom for highly parallel GPU kernels.

We note that GPUVerify performs full function inlining
by default to increase verification precision. In practice this
is possible because recursion and function pointers are pro-
hibited in OpenCL and rare in CUDA.

The architecture of GPUVerify is depicted in Fig. 4.
The component labeled ‘FRONTEND’ is responsible for
transforming a GPU kernel into a corresponding sequ-
ential Boogie program, and the ‘BACKEND’ component

Parallel GPU Kernel

FRONTEND | Sequential HOUDINI BACKEND
. Program -
(K:erndt'etliTran(s;format!on Invariant Boogie Verification
andidate Generation L candidates Generation Engine
Section 4 Section 5 l

Pass / Fail / Timeout

Fig. 4. The architecture of GPUVerify. The shaded parts of the pipeline—
candidate generation and accelerating Houdini—are the focus of this
paper.
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uses the Boogie verification engine [23] to verify the trans-
formed kernel. Boogie uses the loop cutting transforma-
tion discussed in Section 2.1 to abstract loops according
to provided invariants, and calls upon an SMT solver,
such as Z3 [24] or CVC4 [25], to check the resulting verifi-
cation conditions that are generated. The ‘HOUDINI
component of GPUVerify uses the Houdini algorithm,
described in Section 2.2, to automatically compute induc-
tive loop invariants from a set of candidate invariants,
which are speculated by GPUVerify’s front-end.

GPUVerify is sound but incomplete: modulo bugs in the
GPUVerify implementation, and a number of pragmatic
assumptions made by the tool, a verified kernel is indeed
guaranteed to be free from the sorts of defects that GPUVer-
ify checks. However, errors reported by the tool may be false
positives. These spurious errors can arise due to:

e abstract handling of floating-point operations,

e abstraction of the shared state, and

e insufficiently strong loop invariants.
In practice, we find that the last of these errors is the most
common limitation of the tool, and the strength of the gener-
ated loop invariants is entirely governed by the effectiveness of
our implementation of candidate-based invariant generation.

3 BENCHMARK SUITE

We study invariant generation in GPUVerify using a set of
383 benchmarks collected from nine sources:

e 54 OpenCL kernels from the AMD Accelerated Parallel
Processing SDK v2.6 [26],

e 98 CUDA kernels from the NVIDIA GPU Computing
SDK v5.0 and v2.0 [27],

e 16 CUDA kernels hand-translated from Microsoft’s
C++ AMP Sample Projects [28],

e 20 CUDA kernels originating from the gpgpu-sim

benchmarks [29],

15 OpenCL kernels from the Parboil suite v2.5 [30],

18 OpenCL kernels from the Rodinia suite v2.4 [31],

50 OpenCL kernels from the SHOC suite [32],

88 OpenCL kernels generated by the PPCG parallel

code generator [33] from the PolyBench/C bench-

marks v4.0a [34], and

e 24 OpenCL kernels from the Rightware Basemark CL

suite v1.1 [35].
We refer to the above benchmarks as the LOOP set.

All of the suites are publicly available except for Basemark
CL, which was provided to us under an academic license.
The collection covers all the publicly available GPU bench-
mark suites of which we were aware at the start of our
study, and we have made the versions of the kernels we
used for our experiments available online.

The kernel counts do not include 330 kernels that we
manually removed:

e 82 kernels are trivially race- and divergence-free
because they are executed by a single thread.

e 10 kernels use either inline assembly, function
pointers, thread fences, or CUDA surfaces, which
GPUVerify currently does not support.

2. http:/ /multicore.doc.ic.ac.uk/tools/GPUVerify /IEEE_TSE/

TABLE 1
Basic Loop Statistics of the LOOP Set
Number of loops 1 2 3 4 5 6 7+
Kernels 168 93 52 34 19 2 15

Maximum loop-nest depth 1 2 3 4 5
243 67 55 14 4

Kernels

e 40 kernels are data-dependent (i.e., their control
flow depends on array inputs to the kernel), which
requires refinements of the GPUVerify verification
method that cannot be applied automatically [36].

e 198 kernels are loop free and, hence, do not require
invariant generation.

3.1 Loop Properties

To discern the complexity of the kernels in the LOOP set, we
counted the number of loops and the loop-nesting depth of
each kernel after full inlining had been applied (recall from
Section 2.4 that GPUVerify performs full inlining by
default). Having many loops often makes a program hard
to verify, and nested loops can be a particular challenge. In
the case of a sequence of loops, proving that an invariant
holds on entry to a given loop may only be possible if a suf-
ficiently strong invariant is available for a preceding loop in
the sequence; in the case where loop L is nested inside
loop L, invariants for L; may be required to prove that
invariants of L, are inductive, and vice-versa.

We summarize the loop statistics in Table 1. The majority
of kernels (68 percent) only feature a single loop or a pair of
(possibly nested) loops, but there are still a significant num-
ber of kernels (122) with a larger number of loops. At the
very extreme, the heartwall kernel from the Rodinia suite
features 48 loops that are syntactically distinct, i.e., they do
not arise as a result of inlining.

Nested loops occur in 37 percent of kernels. Deep loop-
nests are mostly found in the PolyBench/C kernels, with 42
of those kernels having a maximum loop-nest depth of
three, and 9 having a maximum loop-nest depth of four. All
kernels with a maximum loop-nest depth of five also origi-
nate from this set.

3.2 Obtaining Scalar Kernel Parameters

Most kernels in the LOOP set are designed to be race free
only for constrained thread configurations and input values.
These preconditions are often implicit and very rarely docu-
mented, and any information that does exist appears as
informal source code comments. Unfortunately, suitable
preconditions must be communicated to GPUVerify in
order to avoid spurious error reports.

We were able to confidently add general preconditions to
some kernels by hand—kernels that we were familiar with,
or that were well-documented or sufficiently simple to
understand at a glance. However, for the majority of kernels
we solved the above problem by discovering constraints for
kernel scalar parameters in the following way:

1)  We ran the application in which the kernel was
embedded and intercepted kernel calls using
dynamic library instrumentation to note the input
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#define TILE_DIM 4

#define BLOCK_ROWS 2 o [ 00 | 710 120 | T30 . g
! -
__global__ wvoid transpose (float *odata, float xidata, ! B I e E
int width, int height) { 2 4
int xIndex = blockIdx.x  TILE_DIM + threadIdx.x; 5 i=2 E
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y; o e
4 T00 | TOI v
int index_in = xIndex + width x yIndex; s [riolwn g
int index_out = yIndex + height *» xIndex; N
6 |T20|T21
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) { 7 T30 T3I
odata[index_out + 1] = idatal[index_in + i x width]; -
} i=0 =2

}

Block (1,0) writes to odata

Fig. 5. A matrix transpose example taken from the CUDA SDK. The right side depicts reads of idata and writes of odata by block (1,0) for i =0

and i = 2. Note that the 1idata and odata arrays are disjoint.

parameters of each kernel. For OpenCL applications
we used Kernellnterceptor [37]. For CUDA applica-
tions we used a similar prototype tool.” Running the
kernels in interception mode led to an intercepted
value for every kernel input parameter.

2) We ran GPUVerify on the kernel in bug-finding
mode, assuming the observed thread configuration
but with unconstrained formal parameters. In bug
finding mode, GPUVerify unrolls loops up to a fixed
depth of two to avoid the need for loop invariants,
thereby reducing the possibility of false positives. If
GPUVerify reported a possible data race, and if on
manual inspection of the race we concluded that an
unconstrained integer parameter contributed to the
conditions causing the race, we added a precondi-
tion to constrain the value of the parameter to the
value intercepted for it. This step was repeated until
GPUVerify was satisfied; in the extreme case this led
to constraining all integer parameters.

We only added integer preconditions, because GPUVerify
handles floating-point and array data abstractly. It is atypical
for race freedom to require preconditions on floating-point
inputs, and cases where race freedom is dependent on array
preconditions requires manual methods (see the earlier dis-
cussion regarding kernels removed from our study).

The above process offers a pragmatic solution to garner a
suitable but not overly constrained precondition, although
the most general precondition may be missed. For example,
in the case of the matrix transpose kernel of Fig. 5 (to be dis-
cussed in Section 4.2), the process led to the precondition
height = 8 being added for an 8 x 8 input matrix, instead
of the more general height = gridDim.y x TILE_DIM, which
would allow us to also prove the kernel correct for matrices
of different sizes. Another common case is for a GPU kernel
to require a scalar argument to have a value that is a power
of two within a particular range. Our interception-based
approach would constrain such a parameter to a particular
power of two used at runtime, restricting subsequent analy-
sis of the kernel to that particular value.

We acknowledge that the form of kernel preconditions
can have an impact on invariant generation: a strong

3. https:// github.com/nchong/cudahook

precondition might facilitate the use of strong, easy-to-infer
loop invariants, while a weaker precondition might necessi-
tate more general, harder-to-infer invariants. Nevertheless,
equipping our kernels with a pragmatically-obtained set of
preconditions still led to a challenging set of benchmarks
for invariant generation.

After completing our study we reviewed the number of
preconditions inserted using the above methodology (see
Table 2). We found that 61 percent of kernels required pre-
conditions, and that on average one precondition was
required. The largest number of preconditions required for
a single kernel was 26 (for the heartwall kernel from the
Rodinia suite).

4 CANDIDATE GENERATION IN GPUVERIFY

We now explain how we devised the rules that generate can-
didates in GPUVerify, which was driven by the aim of auto-
matically verifying as many of our benchmark programs as
possible. We also propose several new metrics for evaluating
candidate-based invariant generation, and evaluate our rules
across our benchmark set using these metrics. In Section 4.1
we describe our strategy for devising new candidate genera-
tion rules. In Section 4.2 we discuss, as an example, the intui-
tion behind one of the rules that we developed (the
remaining rules are outlined in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSE.2017.2718516). In
Section 4.3, we assess the effectiveness of, and relationship
between, the rules that we devised. During this process we
discovered a number of defects in the GPU kernels we stud-
ied. We briefly document these issues in Section 4.4.

4.1 Process for Deriving Candidate-Generation
Rules

To gauge the need for invariant generation in GPUVerify to
prove the absence of data races and barrier divergence, we

TABLE 2
Number of Introduced Preconditions

Preconditions 0 1 2 3 4 5 6 7 8+
151 90 8 37 11 5 0 2 1

Kernels
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attempted to verify each kernel in the LOOP set without loop
invariants being either manually or automatically supplied. If
a kernel verifies under these conditions then we say the kernel
is trivial; typically, a trivial kernel has loops that either do not
access the shared state at all, or that access shared arrays that
are never written to by the kernel. We found 253 out of 383
kernels (65 percent) to be non-trivial, the majority of the LOOP
set. Hence, assuming these kernels are indeed correct (and
can be verified as such via suitable invariant annotations),
invariant generation is crucial to the precision of GPUVerify.

The set of non-trivial kernels facilitated the design of new
rules as follows:

1)  Werandomly picked a small number of kernels from
the set, and manually determined a minimal set of
loop invariants that enabled their verification.

2)  Each picked kernel was updated to include the nec-
essary loop invariants as user-defined invariants.

3) Common patterns were identified among the user-
defined invariants that might apply in a wider
setting. For each such pattern, we introduced a
candidate-generation rule to GPUVerify.

4) We removed any user-defined invariants that were
subsumed by the introduced rules.

We iterated the above process of invariant discovery
until all kernels in the LOOP set—bar five kernels which we
found to contain data races—could be verified automati-
cally through a combination of invariants generated by our
candidate-based approach and invariants provided manu-
ally (or, in the case of PolyBench/C, and as explained
below, generated by a compiler). We rigorously applied
step 4 above to ensure that all remaining user-defined invar-
iants were necessary in order for verification to succeed
using the candidate invariants generated by GPUVerify,
ensuring the removal of any manually supplied invariants
that were originally necessary but subsequently subsumed
by generated invariants.

The sketched process led to the development of 19 rules,
summarized in Appendix A, available in the online supple-
mental material. In Section 4.2 we explain how one such
rule was developed.

4.1.1  Compiler-Generated Invariants for the

PolyBench/C Suite

The 88 kernels from the PolyBench/C suite were generated
by PPCG [33], a polyhedral compiler equipped with a back-
end that can compile polyhedral code, and some extensions
thereof [38], into OpenCL.

Many of the machine-generated kernels feature a large
number of loops, in some cases deeply nested due to the
application of loop tiling program transformations. We veri-
fied a selection of these kernels by manually working out
sufficient invariants, and found these invariants to be
divided into two sorts: basic invariants about loop bounds
(similar to the invariants required by many other kernels)
for which we had already devised suitable candidate-
generation rules, and intricate, specialized invariants
related to the memory access patterns associated with poly-
hedral code generation. For the latter invariants we worked
with the lead developer of PPCG to add an option whereby
the compiler can automatically generate a program-wide

invariant characterizing the access patterns of all loops.
Adding the option was possible by virtue of the rich infor-
mation regarding memory access patterns available in
PPCG, which it uses to perform code generation. The invari-
ants generated by the compiler are independently checked
by GPUVerify. For more details see [39].

By combining the compiler-generated invariants regard-
ing access patterns with invariants inferred by GPUVerify
relating to loop bounds it was possible to verify almost all
PolyBench/C kernels. Because the compiler-generated
invariants are specific to this class of kernels, and because
generation of the invariants by the compiler is reliable, we
decided not to propose candidate-generation rules to specu-
late these invariants automatically. There were four kernels
that did not verify out-of-the-box using this strategy. Each
of these kernels required invariants unique to that kernel
and, hence, we opted to supply these invariants manually.

4.2 Access Breaking Rule

As an illustrative example, we now describe a memory
access pattern that we observed in a variety of the kernels,
outline the process by which we manually derived invari-
ants to characterize the access pattern, and comment on
how these led to a candidate-generation rule that automates
our manual process.

Consider the matrix transpose kernel of Fig. 5, which is
taken from the CUDA SDK [27]. The kernel reads from an
input matrix idata of dimension width by height and
writes to an output matrix odata. The matrices are stored in
row-major order, meaning that an element A, , of a matrix
Aisstored in a linear array at offset x 4+ width x y. The kernel
is invoked with a 2-dimensional grid of 2-dimensional thread
blocks, with each block of size TILE_.DIM x BLOCK_ROWS. Each
block is assigned a square tile of dimension TILE_DIM of the
input and output matrices. Individual threads within a block
stride along the assigned tile in increments of BLOCK_ROWS.
During each iteration of the loop, each block of threads copies
TILE_DIM x BLOCK_ROWS elements from idata to odata. For
example, if the matrix dimension is 8 x 8, with TILE_DIM = 4
and BLOCK_ROWS = 2, then the kernel is invoked with a 2 x 2
grid of 4 x 2 blocks, and each block is assigned a tile of 4 x 4
elements. The read and write assignment of block (1,0) is
shown on the right side of Fig. 5. In the figure, we see e.g.,
that thread (1, 1) of block (1,0) assigns idatas; to odata,;
and idatas 3 to odatas s when ¢ equals 0 and 2, respectively.

Intuitively, GPUVerify checks for data race-freedom by
analyzing the intersection of read and write sets of all dis-
tinct thread pairs. In this example, the kernel is free from
data races since idata is only ever read from, and distinct
threads write to distinct offsets of odata. The loop invari-
ants that we require must summarize the writes to odata.
If W, denotes the set of all writes that a thread ¢ has issued,
then a set of invariants that relates W, to its thread identi-
fiers is useful because two distinct threads must always
have at least one block or thread identifier that is distinct

Vw € W;.((w/height) / TILE DIM) = blockIdx.x
A ((w/height)%TILE DIM) = threadIdx.x
w%height)/TILE DIM) = blockIdx.y
w%height)%TILE DIM) % BLOCK_ROWS
= threadIdx.y .

(
(

A
A
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The invariant is trivially satisfied on loop entry, because
on entry W, is empty for all threads. To see that the invari-
ant is maintained by the loop consider an arbitrary write w
from thread ¢ to odata. The access will be of the form
index_out + i, where i is a multiple of BLOCK_ROWS. In
other words, w is of the form

(blockIdx.x X height x TILE_DIM)
+ (threadIdx.x X height)
+ (blockIdx.y x TILE DIM)
+ threadIdx.y
+1,
which shows that the invariant is indeed maintained.

We refer to the above type of invariant as access breaking
since the access pattern is broken down into the compo-
nents identifying thread ¢. We have derived a candidate-
generation rule to speculate access breaking invariants. For
each memory access appearing in a kernel, we use cheap
abstract syntax tree-based pattern-matching to determine
whether the access uses thread identifiers. If so, we trigger
access breaking, which consists of rewriting the access
expression to generate a possible equality for each of the
components identifying a thread.

The precise conditions under which GPUVerify triggers
access breaking, and the particular candidates that this rule
generates, are intricate and were devised in an example-
driven manner; for exact details please refer to the RaceIn-
strumenter class in the GPUVerify source code, and
search for the accessBreak tag.

4.3 Evaluation of Rules

GPUVerify presently has 19 rules for generating candidates—
see Appendix A, available in the online supplemental
material, for a short description of each of these rules. Here
we evaluate the effectiveness of the rules. In particular, we
aim to provide answers to the following questions:

e  Rule generality: Do the rules cause candidate invari-
ants to be generated for a variety of kernels?

e Rule hit rate: To what extent do the rules produce
provable candidates?

e  Rule worth: How often are provable candidates gen-
erated by a rule essential for precise reasoning?

e  Rule influence: To what extent are the rules indepen-
dent, in terms of provability of the candidates they
generate?

e Increase in precision: For how many kernels does
candidate-based invariant generation make the dif-
ference between verification succeeding or failing?

This set of questions, and our systematic approach to

answering them experimentally, is one of the main contri-
butions of our work: the questions and methods easily gen-
eralize beyond our domain of GPU kernel verification, thus
we believe they provide a framework that will be useful to
other researchers interested in designing and evaluating
candidate-based approaches to invariant generation.

4.3.1 Experimental Setup

The experiments in this section were conducted on a machine
with a 2.4 GHz 4-core Intel Xeon E5-2609 processor and 16 GB

of RAM, running Ubuntu 14.04 and using CVC4 v1.5-prere-
lease, Clang/LLVM v3.6.2, and Mono v3.4.0. In GPUVerify,
we enabled user-defined invariants and set the timeout to
30 minutes. We chose a large timeout to allow more kernels
to be explored, thus yielding a larger evaluation. We enabled
user-defined invariants to ensure that, with all candidate
generation rules enabled, each kernel would verify. This was
necessary to meaningfully measure rule worth and rule influ-
ence in Sections 4.3.4 and 4.3.5, and reflects the current state of
GPUVerify where complex examples require a combination
of manually-supplied and automatically-inferred invariants.

We removed 12 kernels from experiments reported upon
in this section—unless indicated otherwise—leaving 372 ker-
nels from the LOOP set. In the case of 11 of the 12 kernels,
GPUVerify did not complete, even with the generous time-
out of 30 minutes. In the case of one kernel GPUVerify ran
out of memory. Among these kernels, the timeouts and
memory-out appear to be due to: large invariants generated
by the PPCG (5 Polybench/C kernels); loops that contain many
accesses, leading to a large number of access-related candi-
dates being generated and significant reasoning required to
prove race-freedom (4 gpgpu-sim kernels, plus one SHOC ker-
nel, which is the kernel that exhausts our memory limit); the
presence of a very large number of loops (the Rodinia heart -
wall kernel); loops with an iteration space that leads to hard-
to-prove invariants being generated by the loopBound rule
(1 kernel from the NVIDIA GPU Computing SDK v5.0, which
in fact verifies when no invariants are speculated).

With enough time and computing resources, we could
have included these kernels in our evaluation of the new
candidate generation rules. We decided not to so that
our experiments would complete within a feasible time
budget. Relatedly, we could have included the 82 race- and
divergence-free kernels that we eliminated from our test set
as described in Section 3, since our candidate generation
rules would still potentially trigger on these benchmarks.
However, we preferred to restrict our evaluation to multi-
threaded examples where there really is potential for
concurrency-related problems.

4.3.2 Experiment: Rule Generality

Our first hypothesis was that the conditions under which a
rule triggers would be found in a variety of non-trivial kernels
but in few, if any, trivial kernels. To test this, we recorded, for
each rule, the number of trivial and non-trivial kernels that
contained at least one candidate produced by that rule.

Columns 2-4 of Table 3 displays the results. We see that
the 130 trivial kernels rarely contain patterns that trigger a
rule. This is positive because trivial kernels can be verified
without the provision of any invariants, and checking the
provability of superfluous candidates is likely to slow down
the verification process. Overall, most rules are neither too
speculative (rule r9 is activated by 255 kernels, the maxi-
mum) nor too bespoke (rule r17 is activated by 14 kernels,
the minimum).* We believe this confirms that the process
by which we introduced rules into GPUVerify has merit.

4. We disregard rule r18 here, because the rule is tied to a particular
GPUVerify command-line option that turns on an extension for aware-
ness of warp-level synchronization in CUDA [40]. The extension is only
enabled for the 9 kernels in the LOOP set.
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TABLE 3
The Number of Kernels for Which Each Rule Triggers,
and the Hit Rate and Essentiality of Each Rule

Kernels triggering a rule

Rule Non-trivial Trivial Total Hitrate Essentiality
r0 70 0 70 74% 36
rl 204 7 211 89% 88
r2 30 0 30 83% 3
r3 30 0 30 60%

r4 85 7 92 59% 0
r5 141 6 147 99% 1
r6 81 3 84 100% 3
r7 46 0 46 91% 32
r8 184 6 190 75% 0
9 238 17 255 47% 30
r10 143 6 149 87% 113
rll 46 0 46 91% 4
r12 103 0 103 49% 45
r13 114 2 116 52% 36
rl4 50 5 55 40% 16
r15 50 5 55 29% 0
rl6 46 0 46 4% 1
rl7 14 0 14 4% 10
r18 7 0 7 90% 1

4.3.3 Experiment: Rule Hit Rate

We further conjectured that a reasonable number of candi-
dates produced by a rule would be provable. We scruti-
nized this hypothesis by counting the following for each
kernel in our evaluation set:

e the number of candidates produced by a rule, and
e the split for these candidates between those that are
provable and unprovable.
The hit rate of a rule is then the percentage of candidates that
are provable.

The results appear in the fifth column of Table 3. One
rule (r6) has a hit rate of 100 percent, and five rules (r1, r5,
r7, r11, r18) have hit rates close to 100 percent. We did not
expect to find this many rules with such high hit rates
because we designed our rules to guess candidates aggres-
sively, in general preferring to err on the side of generating
a large number of candidates (of which many may turn out
to be unprovable) to increase the chance of generating a
provable candidate in a scenario where it is needed for veri-
fication to succeed. Conversely, we see that rules r16 and
rl7 speculate poorly, indicating that the conditions under
which they trigger should be refined. However, rule r17 is
in danger of becoming too specialized, as it is already
unsuccessful at producing candidates for many kernels; the
rule only triggers in 14 cases.

4.3.4 Experiment: Rule Worth

We cannot conclude from the previous experiment that rules
with high hit rates are beneficial to verification. A devious
rule can generate trivially provable yet useless candidates for
any kernel. Hence, we wanted to know whether rules pro-
duce constructive candidates that actually enable verification.

Our hypothesis was that there would be numerous ker-
nels whose verification depended on the candidates gener-
ated by a particular rule, given that we engineered rules in

response to non-verifying kernels. We tested this by observ-
ing whether GPUVerify reports differently for a kernel after
a rule had been disabled. Specifically, we say that rule r is
essential for a kernel if two conditions are satisfied:

1) the kernel verifies when all rules are enabled, and

2) disabling all candidates generated by rule r causes

verification to fail or time out.

We counted the number of kernels for which each rule is
essential. The results are shown in the final column of
Table 3. The sum of the “essentiality” column is 422, mean-
ing that there are 422 distinct (kernel, rule) pairs where a
rule is essential for a kernel. Note that multiple rules may
be essential for the same kernel.

At a glance, it may seem odd that rule r17 triggers for 14
kernels—and is essential for 10 of these—and yet only has a
hit rate of 4 percent. The low hit rate is due to it being a mea-
sure of the generated candidates that are provable invari-
ants, and the particular rule generating many candidates
per kernel.

Unessential rules (r4, 18, r15) are redundant and could be
removed without affecting the precision of GPUVerify on
our benchmarks: they have been superseded by more gen-
eral rules. It is possible that removal of these rules could
change the performance of GPUVerify. This is because, for a
given program, there are typically many ways to phrase a
suitable set of invariants for verification, and the way the
invariants are phrased can affect the ease or difficulty with
which an underlying solver can process the resulting verifi-
cation conditions.

4.3.5 Experiment: Rule Influence

Our final conjecture was that the rules were independent of
each other, having been designed largely in isolation. To
investigate this hypothesis, we observed whether disabling
a rule in GPUVerify affected the hit rate of any of the other
rules. In this case, we say that the disabled rule influences
the rule whose hit rate changed.

Observe that if rule r influences rule s, then the hit rate of s
can only decrease when rz is disabled, because Houdini
returns the unique, maximal conjunction of candidates form-
ing an inductive invariant. To see this, consider the example
from Section 2.1. The second invariant, j <200, is only
inductive in conjunction with the first, j = 2i. Hence, not
speculating the first makes proving the second impossible.

The results of disabling each rule in turn in GPUVerify are
represented by the heat map of Fig. 6. For each pair of rules
(r, s) we give the number of kernels where r influenced s. We
see that the matrix is relatively sparse, with only 43 non-zero
entries, which demonstrates that most rules do not influence
each other when applied to our benchmarks. The major
exceptions are rules r7 and r10, which speculate fundamental
facts related to loop counters; these loop counters are likely
to be used to index into shared arrays.

4.3.6 Experiment: Overall Increase in Precision

An unanswered question is how much more precision is
afforded by the rules as a whole. To answer this, we
launched GPUVerify with all rules disabled and then with
all rules enabled, and we counted the number of kernels
that verified. Disabling all rules, 130 trivial kernels and 0
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Fig. 6. For each pair of rules (r, s) the heatmap shows the number of ker-
nels where rule r influenced rule s. The color bar at the right of the figure
indicates the number of kernels associated with the colors used in the
heatmap.

non-trivial kernels verified, whereas with all rules enabled,
129 trivial kernels and 231 non-trivial kernels verified, a net
gain of 230 kernels. The slight drop in the number of trivial
kernels verified is caused by a timeout: the rules hinder per-
formance. In Section 5 we turn our attention to this problem.

4.4 Defects Detected During the Process of Deriving
Candidate-Generation Rules

The process of attempting to prove data race- and barrier
divergence-freedom of a large set of kernels led us to dis-
cover that a number of the kernels we considered were in
fact incorrect. We also found two bugs in the PPCG compiler
discussed in Section 4.1. We briefly detail the defects and our
efforts to report the issues in order for them to be fixed:

e A missing barrier in the SHOC sort top_scan kernel
causing a data race. This race was reported and sub-
sequently fixed.

e Two threads writing to the same array location in the
CUDA 5.0 convolutionFFT2D spPostprocess2D
kernel. This race was reported to Nvidia and is fixed
in CUDA 7.0.

e A missing barrier in the Rodinia SRAD reduce ker-
nel between the initialization and use of an array.
We reported this issue, and it has been fixed in
version 3.1 of the suite.®

e Opverlapping writes to an array due to an incorr-
ectly set kernel parameter in the Rodinia kmeans
kmeans_ swap kernel. This issue has also been fixed
in version 3.1 of the suite, in response to our report.

e Two threads writing to the same array location in the
Rodinia leukocyte dilate kernel. This has also been
fixed in version 3.1 of the suite, in response to our
report.

e A similar issue in the Rodinia particle (filter
normalize_weights_single kernel, which has
been reported and confirmed, but is not yet fixed.

5. https://github.com/vetter/shoc/issues /30
6. See acknowledgment at https://www.cs.virginia.edu/~skadron/
wiki/rodinia/index.php/TechnicalDoc
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Fig. 7. The evolution of GPUVerify’s performance.

e A data race due to an incorrectly initialized vector in
the Parboil cutcp benchmark, more specifically in
the opencl_cutoff_potential_latticekernel,
which we have reported, with confirmation awaiting.

e A data race affecting several tests in the SHOC
DeviceMemory benchmark, which we have reported.”
However, because these tests are performance
micro-benchmarks that use random data, the race
may not be regarded as important.

e Data races in some of the kernels generated by PPCG
due an issue related to PPCG’s use of schedule
trees [41] and due to PPCG accidentally ignoring
shared arrays when computing insertion points for
barriers. Both of these issues were reported privately
and subsequently fixed.

5 ACCELERATING INVARIANT GENERATION

As new rules were integrated into GPUVerify, the respon-
siveness of the tool diminished. To illustrate this, we ran a
series of experiments over the LOOP set using the machine
setup from Section 4.3.1, all with a per-kernel timeout of
10 minutes (all reported times are averages over five runs).
During the first experiment we invoked GPUVerify with
user-defined invariants enabled but all rules disabled. Then,
for each subsequent experiment, we enabled successively
more rules according to the order in which we imple-
mented them. The final experiment therefore enabled all
rules at our disposal. For each run, we recorded the times
consumed by GPUVerify to process trivial and non-trivial
kernels, including any timeouts. We split the measure-
ments in this fashion to assess the effect of rule introduc-
tion on trivial kernels.

The results appear in Fig. 7. The x-axis shows the evolu-
tion of the rules, and the two lines plotted show the evolu-
tion for the trivial and non-trivial kernels, respectively. This
experiment also allowed us to track the number of kernels
GPUVerify was able to verify as the tool evolved. The
results of this are shown in Fig. 8. Again, the x-axis shows
the evolution of the rules, and the two lines distinguish
between there trivial and non-trivial kernels.

Together, Figs. 7 and 8 give some insight into the trade-off
between precision and performance when increasing the
candidate-based invariant generation facilities of a tool.
Fig. 8 demonstrates the steady improvement in the number

7. https:/ / github.com/vetter/shoc/issues /31
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of kernels that GPUVerify could verify,® but Fig. 7 shows an
overall increase in analysis time. The change in analysis time
for the non-trivial kernels has limited meaning, since the ver-
ification status of these kernels has also changed over time.
However, the verification status for the trivial kernels should
not have changed—since these kernels already verified with-
out provision of invariants—so the steady increase in analy-
sis time for these kernels is undesirable.

The most important data points in Fig. 7 are those for rule
r18, showing the total run time with all rules enabled. We see
that the introduction of the rules approximately doubled the
time needed to verify the trivial kernels. The overhead is
caused by invariant generation, which GPUVerify must
attempt for every kernel, trivial or otherwise. For non-trivial
kernels, performance was hit by a modest 1.4x slowdown.
Merging the results reveals that almost two extra hours
were needed to process all kernels in the LOOP set (from
233 minutes to 346 minutes) once all rules were integrated.

We hypothesized that Houdini was the cause of the per-
formance reduction. To validate this hypothesis, we mea-
sured the time spent at each GPUVerify stage, i.e., at each
box in Fig. 4, during the final experiment described above.
The breakdown of times is as follows:”

e 482 seconds in the frontend (including candidate
generation),
e 7781 seconds in Houdini, and
e 2180 seconds in the verification stage.
As anticipated, Houdini takes up the bulk (74 percent)
of GPUVerify’s run time. Motivated by this, we next consider
techniques that accelerate candidate-based invariant generation.

5.1 Refutation Engines
Our idea is to design a number of under-approximations of
programs that are likely to kill candidates quickly. Here, a
program 7" under-approximates a program S if the correct-
ness of S implies the correctness of T, i.e., T' can fail in the
same or fewer ways than S. In this case, we equivalently
say that S over-approximates T

Houdini employs an over-approximation of the
input program—the loop-cut transformation discussed in
Section 2.1—to compute an invariant from a set of

8. Fig. 8 also supports the hypothesis from Section 4.3.4 that rules r4,
r8, and rl15 were essential when introduced (although they no longer
are at present).

9. These numbers exclude 17 kernels as they exhausted the timeout.

S (loop-cut program)

/1N :

SBASE SSTEP

b under-approximates a
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a over-approximates b

T (initial program)
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Fig. 9. Given an initial program 7', Houdini operates on the loop-cut
over-approximation S. We propose four refutation engines: variants
of the loop-cut program that only check base cases (SBASE) and
step cases (SSTEP)—both under-approximating S—and bounded
loop unrolling for depth £ (LU(k)) and dynamic analysis (DYN)—both
under-approximating 7'.

candidates. Our idea is to design under-approximations of
the loop-cut program that specialize in killing certain types
of candidates. The correctness of our approach rests on a
simple observation: any candidate that is shown to be
unprovable for an under-approximation of the loop-cut
program must also be unprovable for the loop-cut program
itself. We use the term refutation engine to refer to an analysis
that employs an under-approximation. With enough time,
Houdini will eventually uncover all unprovable candidates,
thus a refutation engine is only useful if it finds unprovable
candidates ahead of Houdini or it allows Houdini to navigate
a faster path through its search space. We have conceived
four refutation engines that we speculated might meet this
specification and which we investigate in the remainder of
this section (see Fig. 9 for a summary of the relationships
between the engines).

5.1.1  Splitting Loop Checking: SBASE and SSTEP

Recall from Section 2.1 that the loop cutting transformation
allows us to establish inductive invariants. As seen in Fig. 1,
the invariant must both hold on loop entry (the base case)
and must be maintained by the loop (the step case). Omit-
ting either of the assertions yields an under-approximation
because the resulting program can fail in fewer ways than
the original. This gives us two under-approximations of the
loop-cut program S: one that only keeps the base cases
(SBASE) and one that only keeps the step cases (SSTEP).
We can also think of these under-approximations as split-
ting the program S into two subprograms (cf. Fig. 10). We
speculated that refuting candidates in each subprogram
separately may be faster than dealing with the program as a
whole: although we might expect the sum of the times taken

// base case omitted
havoc modset (B) ;
assume ¢;

// base case
assert ¢;
havoc modset (B) ;

assume ¢; if (c) {
if (c) { B;
B; // step case

assert o¢;
assume false;

// step case omitted
assume false;

} }

Fig. 10. Splitting the loop checking for the loop-cut program S yields two
under-approximations, SBASE (left) and SSTEP (right).
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if (c) {
assert o¢;
B;
. if (c) {
while (c) .
invariant ¢ { ;?sert i
B if (c) {

}

assume false;

}

}

Fig. 11. Bounded loop unrolling of the loop on the left for depth k =2
yields the loop-free program on the right.

to prove the base and step cases separately to be similar to
the time associated with proving them in combination, if we
have a base case (or step case) that does not hold due to an
unprovable candidate invariant, we might be able to estab-
lish this more quickly by considering the base case (or step
case) in isolation, leading to faster refutation of the offend-
ing candidate.

5.1.2 Bounded Loop Unrolling, LU(k)

Bounded loop unrolling a program for a given depth &
yields a loop-free program where only the first k iterations
of each loop are considered. When applied to a program T°
this yields an under-approximation of 7. The method is
commonly employed by bounded model checking tools
such as CBMC [42]. Fig. 11 shows the transformation of a
loop after unrolling for depth k = 2. The loop-free frag-
ment models k iterations of the loop. The resulting pro-
gram is an under-approximation because it does not
consider behaviors that require further loop iterations. The
assume false statement implies that any execution that
would continue past k iterations is infeasible and will not
be considered [16].

Despite encoding only a subset of the original program’s
behavior, loop unrolling leads to a syntactically larger pro-
gram that, when converted to an SMT formula, may place a
high burden on the underlying SMT solver. This is especially
problematic in the case of nested loops, where unwinding an
outer loop k times creates k copies of all inner loops, which
must then be unwound in turn. For this reason, in our experi-
ments we consider only the LU(1) configuration, where loops
are unwound up to depth one. A key difference between
SBASE and LU(1) is that all program loops are abstracted
when SBASE is employed, while LU(1) uses no abstraction.
This means, e.g., that if two loops appear in sequence, and
the first loop has an iteration count of at least two, no candi-
dates of the second loop can be eliminated when LU(1) is
used since every program path that reaches the second loop
involves two or more loop iterations. In contrast, SBASE
considers program paths that abstract the first loop, reaching
the head of the second loop directly.

5.1.3 Dynamic Analysis, DYN

Executing a program T is a classic under-approximating
analysis which, unlike our other refutation engines, is not
dependent on a SMT solver. Instead, the statements of 1" are
simply interpreted. To enable execution, we implemented
an interpreter for Boogie—the intermediate verification

language into which GPUVerify translates kernels and in
which it expresses candidate invariants.'”

Our dynamic analyzer executes each kernel multiple
times. Before each invocation, values for formal parameters
and thread and block identifiers (i.e., threadIdx and
blockIdx) are chosen that satisfy the preconditions of the
kernel (cf. Section 3.2). Re-invocation halts once a selected
coverage criterion—basic block coverage—is met or a spe-
cific number of launches has been reached. For many ker-
nels we find that a single execution suffices to achieve full
basic block coverage, because GPU code is rarely control
dependent on formal parameters or thread variables. This
means we can simply choose random values and can ignore
sophisticated test-generation techniques, which is clearly
not applicable to other domains. In spite of this simplicity,
dynamic analysis may still be slow, for two reasons.

First, much execution time may be spent in loops with
large bounds without refuting many candidates. Typically,
this is due to dynamic analysis rejecting a candidate on the
first loop iteration, or not at all. Hence, iterating through
loops does not serve our aim of accelerating invariant gener-
ation. Our pragmatic solution is to bound the number of
loop iterations summed across all loops. The downside is
that a single loop may hog the execution, preventing analy-
sis of candidates in other loops. This drawback is more
severe if there are candidates in loops after the cut-off point
that are easily disproved through dynamic analysis but dif-
ficult to reject through an SMT-based refutation engine.

Second, candidates involving reads from and writes to
arrays should be evaluated for all array indices discovered
during the dynamic analysis. For instance, suppose we have
arrays A and B and a candidate asserting that all accesses
into A and into B are distinct. Then, we must evaluate this
candidate with respect to all tuples (a, b), where a and b are
observed array indices of A and B, respectively. Checking all
tuples, however, is generally not feasible as the number
grows exponentially in the length of the tuple. Instead, we
select a constant number of random tuples, using the ratio-
nale that a candidate is likely true if it holds for this restricted
subset. An obvious disadvantage is that the random selec-
tion may miss an instance that falsifies the property.

A risk associated with employing dynamic analysis is
that the semantics of the dynamic analyzer might diverge
(unintentionally) from the semantics of Boogie. This could
lead to the refutation of candidates that Houdini would in
fact be able to prove, or to the failure to refute candidates
that a correct dynamic analysis would identify as false.
While we took care to implement an accurate analysis, we
note that this risk cannot compromise the soundness of veri-
fication. In the first case, where dynamic analysis refutes a
provable candidate, the price may be that verification of the
kernel subsequently fails, due to an insufficiently strong
invariant being inferred. In the latter case, where dynamic
analysis fails to refute a candidate, the candidate is guaran-
teed to be refuted eventually by Houdini, so the price is
merely that the performance benefit of using dynamic anal-
ysis may not be realized.

10. Boogaloo [43] and Symbooglix [44] also support Boogie interpre-
tation, but are generic and do not exploit knowledge specific to GPU
kernels, as we do.



BETTS ET AL.: IMPLEMENTING AND EVALUATING CANDIDATE-BASED INVARIANT GENERATION 643

TABLE 4
Refutation Engine Performance and Throughput

Windows Ubuntu
Engine Refutations Total time Throughput Refutations Total time Throughput

(sec) (refutations/sec) (sec) (refutations/sec)
H 5,703 17,805 0.32 5,615 15,544 0.36
SBASE 3,692 5,053 0.73 3,692 4,991 0.74
SSTEP 3,421 15,125 0.23 3,430 14,664 0.23
LU(1) 3,712 10,096 0.37 3,754 9,541 0.39
DYN 2,367 811 2.92 2,301 2,828 0.81

5.2 Evaluation of Refutation Engines
We conducted several experiments addressing the follow-
ing questions:

Is a refutation engine able to reject candidates?
Do refutation engines complement each other?
Is invariant generation accelerated by a refutation
engine?

e Does launching multiple refutation engines in paral-
lel yield discernible gains?

5.2.1 Experimental Setup

For these experiments we were interested in measuring the
performance of GPUVerify using various invariant genera-
tion strategies. As the issue of performance fluctuation
across platforms is well-known, we performed the experi-
ments across two machines running different operating sys-
tems; this to reduce measurement bias [15]:

e a Windows machine with a 2.4 GHz 4-core Intel Xeon
E5-2609 processor and 16 GB of RAM, running Win-
dows 7 (64 bit) and using CVC4 vl.5-prerelease,
Clang/LLVM v3.6.2, and Common Language Run-
time v4.0.30319; and

e a Ubuntu machine also with a 2.4 GHz 4-core Intel
Xeon E5-2609 processor and 16 GB of RAM, running
Ubuntu 14.04 and using CVC4 vl.5-prerelease,
Clang/LLVM v3.6.2, and Mono v3.4.0 (this is the
same machine as the one used in the precision
experiments).

The four refutation engines considered were SBASE,
SSTEP, LU(1), and DYN. The dynamic analyzer had the fol-
lowing settings (cf. Section 5.1.3), which we obtained via
exploratory manual tuning during development of the ana-
lyzer: it quit as soon as 100 percent basic block coverage was
met or 5 executions completed; it terminated a single execu-
tion if 1,000 loop iterations were processed; a candidate refer-
ring to tuple of array indices was evaluated with respect to 5
distinct, randomly chosen tuples of observed values (or
fewer, if fewer than 5 distinct tuples had been observed). All
these experiments included our user-defined invariants (the
PolyBench/C suite also included the compiler-generated
invariants discussed in Section 4.1), and used a timeout of
10 minutes. All reported times are averages over five runs.

5.2.2 Experiment: Refutation Engine Power

The first hypothesis we wished to validate was whether
every refutation engine could reject candidates at least as

fast as Houdini. To this end, we ran each refutation engine
in isolation and measured both the time consumed and the
number of candidates refuted. We present the results in
Table 4, showing numbers for Houdini (denoted by H) for
comparative purposes.

The yardstick in this experiment is throughput: the num-
ber of refutations per second. We see that DYN is extremely
effective on Windows, with a throughput that is four times
that of the next-best performing refutation engine, but
much less so on Ubuntu, where the difference to the next-
best performing engine is marginal. The throughputs of the
other refutation engines appear mostly insensitive to the
machine setup; we attribute the discrepancy in throughput
for DYN to differences in the Common Language Runtime
implementation. SBASE has a high throughput on both
machines and is much more effective than SSTEP, suggest-
ing that it is easier for the SMT solver to reason about base
case candidates. LU(1) has a moderate throughput, but kills
the most candidates among the refutation engines.

The results indicate that DYN and SBASE show promise
for acceleration of candidate refutation, while LU(1) has
only marginally higher throughput compared with H. The
throughput of SSTEP is poor. Anecdotally, our experience
working with SMT-based program verifiers is that SMT
solvers tend to spend more time reasoning about the step
case associated with a loop compared with the base case.
We thus hypothesize that the SBASE engine achieves high
throughput by rapidly refuting all invariants that can be
eliminated via base-case-only reasoning, avoiding the hard
work associated with the step case. In contrast, SSTEP
undertakes the work that is hard for H—the step case—but
unlike H does not provide throughput by eliminating candi-
dates that can only be refuted by base case reasoning.

5.2.3 Experiment: Complementary Power

Our expectation was that refutation engines would each
specialize in killing candidates generated by different rules,
and that the refutation engines would therefore comple-
ment each other. To test this, we recorded the set of candi-
dates rejected by a refutation engine across the whole LOOP
set and then calculated the Jaccard index [45] between the
sets for every pair of refutation engines. The Jaccard index
numerically evaluates the similarity among sets

_lAnB
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TABLE 5
Refutation Engine Similarity in Terms of Refuted Candidates;
A Low Jaccard Index Indicates That Two Engines Are
Complementary in Their Refutation Power

Windows Ubuntu
Refutation engine pair Jaccard index Jaccard Index
DYN SBASE 0.12 0.17
DYN SSTEP 0.23 0.25
DYN LU®@) 0.22 0.25
SBASE SSTEP 0.33 0.39
SBASE LU®@) 0.63 0.70
SSTEP LU®1) 0.49 0.53

For non-empty sets A and B, J(A, B) = 1if the sets are iden-
tical, and J(A4, B) = 0 if the sets share no common elements.
The higher the Jaccard index, the more related the sets are.
In our case, when comparing the sets of candidates killed
by two distinct refutation engines, a low Jaccard index indi-
cates that the two engines are complementary in their refu-
tation power.

Table 5 gives the Jaccard indices. We observe that DYN
complements every SMT-based refutation engine, especially
SBASE. Given that DYN and SBASE were also the best per-
forming engines in the throughput experiment, we hypothe-
sized that these refutation engines together would be able to
accelerate invariant discovery (we further investigate this
hypothesis in the next section). Finally, the higher Jaccard
index for SBASE and LU(1) suggests that these engines
refute similar candidates, while the lower Jaccard index for
SBASE and SSTEP indicates, as expected, that these
engines target different candidates.

Note that the computed Jaccard indices differ between
our experimental machines because of our use of a timeout.
With enough time, our refutation engines would compute
the same results on both platforms. However, as our aim is
to accelerate invariant generation, the extent to which a ref-
utation engine can refute candidates is of limited interest if
the time required to do so is excessive.

5.2.4 Experiment: Overall Performance Impact

A drawback of evaluating a refutation engine in terms of
throughput is that this disregards the difficulty of refuting
the remaining unprovable candidates. If a refutation engine
merely quashes easily disproved candidates, then Houdini
must still do the heavy lifting. The experiment described in
this section therefore assesses whether the proposed refuta-
tion engines, or a combination thereof, actually help Hou-
dini to reach a fixpoint faster.

We compared the time to return an invariant for a kernel
across various refutation engine configurations. Our base-
line configuration was Houdini in isolation, which is consis-
tent with the current state of the art. We set up a number of
sequential configurations whereby Houdini ran after a refu-
tation engine had terminated; these configurations are
denoted R;H where R € {DYN,SBASE,SSTEP,LU(1)}.
We also considered a single parallel configuration whereby
DYN and SBASE were launched alongside Houdini; this
configuration is denoted DYN|SBASE|H. We selected
DYN and SBASE for our parallel configuration because of

their high throughputs and complementary nature, as
observed in our previous experiments.

In the parallel configuration, there is a shared pool of ref-
utations that Houdini reads on each iteration. The exchange
of rejected candidates is therefore asynchronous. An asyn-
chronous exchange is allowed for two reasons:

1) Houdini guarantees that the number of candidates

decreases in a strictly monotonic fashion [46], and

2) every candidate killed by a refutation engine may be

trusted (because the engine employs an under-
approximating analysis).
Note that the completion time of the parallel configuration is
measured as the time for Houdini to terminate; at that point
the refutation engines may still be running, but an invariant
has been computed.

Figs. 12 and 13 present the results for the Windows and
Ubuntu machine, respectively. There are two types of bar
charts. The first (Figs. 12a and 13a) provides a bird’s-eye
view of performance, showing the total times to process all
kernels in the LOOP set for each configuration. The second
(Figs. 12b, 12¢, 12d, 12e, and 12f and 13b, 13c, 13d, 13e, and
13f) narrows the focus to a specific configuration, grouping
per-kernel performance comparisons into five intervals:
(—o0, —2) (noteworthy slowdowns), [-2, —1) (modest slow-
downs), [1,1] (break-evens), (1,2] (modest speedups), and
(2,00) (noteworthy speedups). Each of these intervals is
divided into two categories depending on whether we
deem invariant refutation for a kernel to be inherently fast
(< 2 seconds for the baseline configuration to finish) or
inherently slow (> 2 seconds for the baseline configuration
to finish). We split the intervals to be able to evaluate
whether the speedups and slowdowns of a configuration
are actually noticeable to a user. Any improvement in speed
is likely to be more noticeable when invariant refutation is
slow while, conversely, any performance deterioration is
likely more noticeable when invariant refutation is fast. The
threshold of two seconds is simply based on our experience
to date. The break-evens ([1, 1]) indicate that any change in
analysis time is absorbed by floating-point round-off error.
In most instances these are due to kernels for which analysis
times out with both Houdini and the configuration under
consideration, while some cases are accounted for by ker-
nels for which the analysis time is very fast, so that perfor-
mance differences are likely below the granularity of the
system clock used for time measurements.

We examine the results of the configurations in the fol-
lowing order: dynamic analysis, the SMT-based refutation
engines, and the parallel setup.

Sequential Configquration DYN;H. On the Windows machine
there was a noticeable boost in performance using the DYN;H
configuration (compared with the baseline H). The overall
run time improved from 17,806 to 15,283 seconds. The
maximum 93.58x speedup enabled the invariant generation
for the kernel exhibiting this speedup to finish within
6.41 seconds rather than timing out after 600 seconds.

Slowdowns become severe when a refutation engine
is unable to kill any candidates, in which case sequential
composition always reduces performance. For dynamic
analysis, the magnitude of deceleration is generally domi-
nated by the time required to interpret the loop body with
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Fig. 12. Overall performance impact on the Windows machine, organized by noteworthy slowdowns, (—oco, —2); modest slowdowns, [-2, —1); break-

evens, [1,1]; modest speedups, (1, 2]; and noteworthy speedups, (2, co).

the longest execution time. Indeed, the 3.19x slowdown
occurred in the case of a kernel whose loop body has a large
number of statements, taking invariant generation from
22.21 to 70.77 seconds. This shows that our heuristics to exit
dynamic analysis early are not a panacea. We believe a
more valuable solution would be to start dynamic analysis
only if a coarse estimate of kernel execution time falls below
a certain threshold. Nevertheless, this configuration offered
the most impressive return: only 8 kernels suffer a notewor-
thy slowdown (none of which had inherently fast associated

invariant refutation performance in any case), and the
majority of kernels (202) benefited from a performance
boost, 42 of which are noteworthy.

The picture is radically different on the Ubuntu machine,
with a significant maximum slowdown and an overall loss
in performance (16,632 instead of 15,544 seconds). Investi-
gating the kernel for which the maximum slowdown occurs
in more detail, we found that, on the Windows machine, H
and DYN; H completed in 11.31 and 27.04 seconds, while,
on the Ubuntu machine, the configurations completed in
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7.49 and 324.33 seconds. The wide disparity between times
cannot be attributed to variations in execution paths during
dynamic analysis, because the kernel is not control depen-
dent on formal parameter values or thread identifiers.
Moreover, recording the dynamic statement count, we veri-
fied that the interpreter performs the same work on both
machines—the counts matched (110,907 statements). The
slowdown is therefore a consequence of statement execu-
tion time, and ultimately due to the Common Language
Runtime implementation; reaching the same conclusion as
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in our throughput experiment. In spite of this handicap,
DYN; H still offered the best speedup, the second most
speedups (184; after the DYN||SBASE|H configuration),
and the most noteworthy speedups.

Our observations of dramatically different results
between platforms emphasizes the importance of account-
ing for measurement bias when conducting experimental
studies [15], which we have attempted to do by reporting
experiments on machines with different operating systems
and runtime implementations.
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Sequential Configurations {SBASE, SSTEP, LU(1)}H.
SBASE;H is the only sequential configuration that offered
an average cross-platform performance boost (17,428
instead of 17,806 seconds on the Windows machine, and
15,333 instead of 15,544 seconds on the Ubuntu machine).
This matches our expectations given the high throughput
observed for SBASE in the experiments of Section 5.2.2.

SSTEP;H offered very little, consuming the most time on
both machines, amassing the fewest speedups on both
machines, and creating the worst slowdown on the Win-
dows machine. Given the low throughput associated with
SSTEP in the experiments of Section 5.2.2, this is hardly
surprising.

LU(1);H is similar to SBASE;H except that the former
resulted in a few extra noteworthy speedups and a better
maximum speedup on both machines, while the latter
resulted in more speedups in total and consumed less time
overall. Given that the throughput of SBASE was approxi-
mately double that of LU(1), these results suggest that LU
(1) kills more valuable candidates, leaving Houdini with
less work to do. The work that SBASE undertakes is still
worthwhile (every discovered unprovable candidate is
valuable), but it leaves the more challenging unprovable
candidates to Houdini.

Finally, we note that all of the SMT-based configurations
negatively impacted the majority of fast kernels on both the
Windows and Ubuntu machine. Hence, these refutation
engines should only be enabled when GPUVerify is likely
to struggle with a kernel and its candidates.

Parallel Configuration DYN|SBASE|H. In comparison
with the other configurations, there was a marked improve-
ment in average performance for the DYN||SBASE|H con-
figuration, with a 1.27x speedup on the Windows machine
and a 1.11x speedup on the Ubuntu machine. This met our
expectation that execution of Houdini in parallel with the
most powerful refutation engines is superior to Houdini in
isolation.

Some of the other results, however, appear counter-
intuitive. We might expect parallelization to completely
eliminate the possibility of multiple strategies slowing
down invariant generation: modulo experimental error and
the modest overheads of parallelism, it might seem that the
performance of regular Houdini should be an upper bound
on parallel performance. However, we find that worst-case
slowdowns are reduced (from 3.19x to 3.15x on Windows,
and from 43.31x to 3.17x on Linux), but not eliminated.
The reason is that Houdini is not impervious to the other
refutation engines: how the fixpoint is reached is influenced
by the order in which refutations are discovered, and alter-
nate orderings create variations in processing time.

6 RELATED WORK

In the same vein as the GPUVerify project, several other
methods for testing and verifying properties of GPU kernels
have been proposed. These include approaches based on
dynamic analysis [47], [48], [49], verification via SMT solv-
ing [50], [51], [52], symbolic execution [53], [54] and pro-
gram logic [55], [56]. Among these approaches, GPUVerify
is the only technique that uses candidate-based invariant
generation as part of its analysis method.

Invariant generation has been a long-standing challenge
in computer science that has received a lot of attention from
researchers, e.g., [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12] (by no means an exhaustive list). We discuss the work
most closely related to our study.

6.1 Candidate-Based Invariant Generation

Houdini was proposed as an annotation assistant for the
ESC/Java tool [5], and is formally presented in [13]. The
method is analogous to an invariant strengthening tech-
nique for circuit equivalence checking [6]; we believe the
methods were discovered independently. Houdini can be
viewed as a special instance of predicate abstraction [57],
restricted to conjunctions of predicates. This restriction is
what makes the runtime of Houdini predictable, involving
a worst case number of solver calls proportional to the num-
ber of candidates. The restriction also makes it impossible to
synthesize disjunctive invariants over predicates using
Houdini. A recent compelling application of Houdini is in
the Corral reachability checker, where Houdini is used to
generate procedure summaries which in turn are used to

guide the search for bugs [58].

6.2 Abstract Interpretation

Abstract interpretation [4] is a general program analysis
framework that can be parameterized to generate inductive
invariants over a given abstract domain. For instance, the
Interproc analyzer synthesizes invariants over the abstract
domain of linear inequalities, using the Apron library [7].
Predicate abstraction is abstract interpretation over the
domain of Boolean combinations of predicates [59], and
Houdini is thus a form of abstract interpretation where the
domain is restricted to conjunctions of predicates. The main
disadvantages of abstract interpretation are that it is inflexi-
ble, in the sense that generation of invariants beyond a
given abstract domain requires a bespoke new domain to be
crafted, and that to ensure convergence to a fixpoint it is
necessary to apply widening which can be hard to control in
a predictable manner. In contrast, a Houdini-based
approach can easily be “tweaked” by adding new candidate
generation rules on an example-driven basis, as we have
demonstrated in this paper. Convergence to a fixpoint is
also predictable based on the known set of candidates. In
recent work, Abstract Houdini has been proposed in an
attempt to combine the benefits of abstract interpretation
and candidate-based invariant generation [8].

6.3 Invariant Generation for Affine Programs

There has been significant progress recently on invariant
generation for a restricted class of programs that operate on
unbounded integers and only compute affine expressions
over program variables. Under these restrictions, novel
applications of Craig interpolation [9], abduction [10] and
abstract acceleration [11] have been shown to be effective in
invariant synthesis. The weakness of these methods are the
restrictions on input programs. In our application domain,
for example, programs operate on fixed-width bit-vectors
and floating point numbers. It is necessary to reason pre-
cisely about bit-vectors to capture arithmetic using powers-
of-two, frequently encoded efficiently using shifting and
masking, and we require support for uninterpreted
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functions to abstract floating point operators but retain their
functional properties. Furthermore, GPU kernels frequently
exhibit non-linear computations. For example, reduction
operations involve loops in which a counter exponentially
varies in powers of two between an upper and lower bound.
These characteristics render methods for affine programs
inapplicable in our setting.

6.4 Dynamic Invariant Generation

The techniques discussed above all use static analysis to
establish program invariants with certainty. In contrast,
dynamic invariant generation, pioneered by the Daikon sys-
tem [12] employs dynamic analysis with respect to a test
suite to speculate likely invariants: facts that are found to
hold invariantly during testing, with statistical evidence
that the dynamic invariance of these facts appears to be
non-coincidental. This method provides no guarantee that
the suggested facts are actually invariants. A study combin-
ing the Daikon method with extended static checking for
Java considered the use of dynamically generated invariants
as a source of candidates for Houdini [60].

6.5 Studies on Invariant Generation

A related study on invariant generation [61] aimed to evalu-
ate whether it is better to rely on manual effort, automated
techniques or a combination of both in generating program
invariants. The study concludes that a combination is
required: Daikon inferred 5 times as many invariants as spec-
ified manually, but could only find approximately 60 percent
of the manually crafted invariants. The benchmark set con-
sisted of 25 classes taken partially from widely used libraries
and partially written by students. The size of the benchmark
set allowed the authors to investigate each inferred assertion
individually; this is not feasible in our study due to the sub-
stantially larger number of benchmarks.

7 CONCLUSIONS

In this study we have shown that candidate-based invariant
generation is valuable to GPUVerify, significantly increasing
the precision of the tool and, to some extent, relieving the
burden of manual loop-invariant discovery. This success is
in large part due to our strategy of incorporating new rules
into GPUVerify because candidate-based invariant genera-
tion is only as good as the supply of speculated candidates.
However, our evaluation also provides a cautionary tale:
rules may become redundant over time, particularly when
new rules are introduced, thus a continual assessment of
their use in the verification tool is worthwhile.

The wider issue with candidate-based invariant genera-
tion is that, in general, more rules mean more candidates
and, ultimately, more processing time. The refutation
engines and the infrastructure that we implemented to curb
processing time proved effective when comparing invariant
discovery with and without these techniques. Our mecha-
nism to choose between refutation engines and between
sequential or parallel processing mainly rested on empirical
evidence of throughput and complementary power. The
drawback of this, as the results indicate, is that the unselected
refutation engines or processing modes could be better for
specific kernels. As is, our setup ignores all properties of the

program and of the candidate invariants. Future work may
therefore investigate machine learning techniques to fine-
tune the setup. Another avenue for future work is to investi-
gate additional parallel refutation strategies, in addition to
the strategy that we predicted to be the most promising.
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