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Abstract
This paper provides a performance and programmability compari-
son of high-level parallel programming support in Haskell, F# and
Scala. Developing several parallel versions, we employ skeleton-
based, semi-explicit and explicit approaches to parallelism. We fo-
cus on advanced language features for separating computational
and coordination aspects of the code and tuning performance. We
also assess the impact of functional purity and multi-paradigm de-
sign of the languages on program development and performance.

Basis for these comparisons are several Barnes-Hut implemen-
tations of the n-body problem in all three languages, on both Linux
and Windows. Our performance measurements on state-of-the-art
multi-cores achieve a speedup up to 5.62 (on 8 cores) with a
highly-tuned Haskell version. For comparable implementations in
Scala and F# we achieve speedups of 4.51 (on 8 cores) and 2.28
(on 4 cores), respectively. We observe that near best speedups are
achieved using the highest level abstraction in these languages.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming; D.3.2
[Programming Languages]: Language Classifications—Applicative
(functional) languages

General Terms Algorithms, Languages, Measurement, Perfor-
mance

Keywords Haskell, F#, Scala, Parallelism, n-body, Barnes-Hut

1. Introduction
Because functional languages are not defined in terms of operations
on a hidden global state, they avoid unnecessary sequentialisation
and provide ample latent parallelism that can be exploited by com-
piler or runtime-system. This property makes them an attractive
platform for exploiting common-place parallel hardware without
imposing new concepts of explicit threads with explicit communi-
cation onto every parallel application.

Functional languages provide a high degree of abstractions and
expressiveness, enabling the parallel programmer to only specify
what value the program should compute instead of how to com-
pute it. Managing parallelism is all about how and therefore largely
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hidden from the programmer. However, for tuning parallel perfor-
mance, some limited control of operational aspects is desirable.

The approaches to efficiently exploit such latent parallelism,
provided in the latest implementations of state-of-the art languages
such as Haskell, F# and Scala, all aim to be minimally intrusive
to the code, while giving the expert parallel programmer sufficient
control to perform parallel performance tuning. In this paper, we
evaluate language mechanisms provided in each of these three
languages, covering several levels of abstraction as well as a range
from purely declarative to mixed paradigm languages. We present
a head-to-head comparison of the resulting parallel performance.

A new generation of programming languages, such as F# and
Scala, often take a multi-paradigm approach, embedding the advan-
tages of functional languages into a mainstream, object-oriented
language. They use existing, highly-optimised VM technology,
.NET and JVM respectively, to combine the ease of express-
ing parallelism with efficient sequential execution. In this paper,
we perform a head-to-head programmability comparison between
purely functional Haskell and multi-paradigm F# and Scala, all
with semi-explicit control of parallelism that rule out the explicit
use of threads. We assess the impact of key language design issues,
in particular laziness and mutable data-structures, on sequential
and parallel performance. Finally, we give a head-to-head parallel
performance comparison of Haskell, F# and Scala, using different
techniques to expose parallelism at different levels of abstraction.
The results from our measurements of a Barnes-Hut implemen-
tation of the n-body algorithm show that we achieve respectable
speedups in all languages. We achieve a speedup of 5.62 (on 8
cores) with a highly-tuned Haskell version. With the implementa-
tions in Scala and F# we achieve speedups of 4.51 (on 8 cores) and
2.28 (on 4 cores), respectively.

The remainder of the paper is organised as follows: Sec-
tion 2 presents related work; Section 3 presents the background
on Haskell, F# and Scala, and their support for parallelism; Sec-
tion 4 presents our multiple Barnes-Hut algorithm implementa-
tions, both sequential and parallel; Section 5 presents results from
our measurements on two different multi-core architectures, an 8-
core Linux machine and a 4-core (with hyper-threading) Windows
machine; and we summarise our findings in Section 6.

2. Related Work
We can broadly classify parallel declarative languages as implicitly
parallel, without any explicit control of parallelism, semi-explicit,
only exposing potential parallelism, and explicit, with constructs
for the generation and handling of explicit threads. In this sec-
tion we focus on and survey semi-explicit approaches, although the
lower level constructs in Scala can also be classified as explicit. An-
other useful classification is by purity of the programming model,



with Haskell and Clean [24] representing pure languages and F#,
Scala, as well as most Lisp and ML dialects, such as OCaml [15],
representing impure, mixed paradigm languages. The general area
of parallel declarative programming languages is surveyed in depth
in [35]. A more focused comparison of parallel Haskell variants is
given in [34].

Crucial to a high-performance implementation of a declarative
language is an adaptive runtime-system, that can make good de-
cisions about the management of parallelism, usually deferred to
the programmer in explicit languages. Important concepts are fu-
tures as handles for a data-structure, that might be evaluated in
parallel and on which other threads should synchronise, first in-
troduced in the Mul-T [12] variant of Lisp. Importantly for perfor-
mance, this system introduced lazy task creation [21] as a tech-
nique, where one task can automatically subsume the computa-
tion of another task, thus increasing the granularity of the paral-
lelism. Both, the language- and the system-level contributions have
been picked up in recent implementations of parallel functional
languages: F#, PolyML [20] and parallel CML [27], implemented
in Manticore, provide language-level futures; GpH’s runtime sys-
tem uses lazy task creation, by representing potential parallelism
as “sparks” that can move freely and cheaply between processors
and work represented by one spark can be subsumed by a run-
ning thread if no additional parallelism is required. Another key
runtime-system design goal is to support light-weight threads, thus
reducing the overhead for creating parallelism and encouraging a
programming style that generates a massive amount of parallelism,
giving the runtime-system the flexibility to arrange the parallelism
in a way most suitable to the underlying hardware. Haskell/GHC
excels at light-weight threads, as shown by the thread-ring bench-
mark of the Computer Language Shootout [29]. Filaments [17] and
Cilk [10], now integrated in Intel’s Cilk Plus compiler, are other
examples of runtime-systems for light-weight threads.

Several experimental languages explored the use of high-
level, parallelism language features in object-oriented languages:
Fortress [30], X10 [6] and Chapel [5]. Of these, Chapel is currently
best supported, in particular on massively parallel supercomput-
ers. These languages introduce high-level constructs such as vir-
tual shared memory (X10), structured programming constructs for
parallel execution (Chapel), and software transactional memory
(Fortress) to avoid a re-design of the software architecture due to
specifics of the underlying, parallel architecture.

An increasingly important area of high-level abstractions for
parallelism are parallel patterns or algorithmic skeletons [7],
higher-order functions with pre-defined parallel computation struc-
tures. Because they can hide all complexities of the efficient, pos-
sibly hardware-dependent, handling of parallelism in a library, it is
being picked up as technology of choice in mainstream languages
without built-in high-level parallelism support. Prominent exam-
ples are Google’s MapReduce [9] implementation, on large-scale,
distributed architectures, Intel’s Task Building Block [26] library,
and to some extent the Task Parallel Library [14].

3. Background
3.1 Haskell
The key advantage of Haskell for parallel computation is referential
transparency which guarantees that evaluation can happen in any
order. This implies that the amount of inherent parallelism in a
Haskell program is large such that each sub-expression can be
evaluated in parallel. However, this leads to far too fine-grained
parallelism and an approach that allows the programmer to specify
which computation is worthwhile to be evaluated in parallel is
desirable.

The lazy semantics of Haskell has implications on the parallel
programming models that can be supported by the language. Un-
constrained lazy evaluation is essentially sequential which contra-
dicts how parallel evaluation should proceed. Some degree of eager
evaluation is essential in order to arrange computations in parallel.
The programmer also needs to specify the evaluation degree of ex-
pressions, such that just enough of an expression is evaluated in
order to enable other expressions to continue evaluation in parallel.

A number of parallel programming models exist in Haskell and
the choice between them depends on the problem at hand and the
amount of control needed. They are covered in detail in [32]. For in-
stance, building on top of concurrency primitives and developed en-
tirely as a library, the Par monad offers a rather explicit approach re-
quiring manual fork of tasks and communication between threads.
DPH on the other hand is more implicit and is mainly used for
data-parallel problems. In this paper, we focus on GpH which is an
extension of GHC, a highly optimising, transformation-based com-
piler and graph-reduction-based runtime system.

3.1.1 GpH
Glasgow parallel Haskell [18, 19, 33] is a minimal, conservative,
parallel extension of Haskell, supported by the GHC compiler. It
extends standard Haskell by providing two basic primitives for
specifying and controlling parallelism.

−− p a r a l l e l c o m p o s i t i o n
p a r : : a −> b −> b
−− s e q u e n t i a l c o m p o s i t i o n
pseq : : a −> b −> b

par allows the programmer to annotate computations that can
be usefully be evaluated in parallel. The first argument is sparked
and may potentially be executed in parallel with the evaluation of
the second argument. pseq enforces sequential ordering which is
needed to arrange parallel computations.

Naive usage of these primitives can lead to unexpected parallel
behaviour, for example generating sparks for already evaluated
data. Evaluation strategies are abstractions over the primitives to
provide an even higher level of control of parallelism. Evaluation
strategies provide a clean separation of the coordination aspects
from the main computation. For example, parList can be used
to demand parallel evaluation of each list element, separately from
defining the contents of the list. Additionally, evaluation degree and
evaluation order can be specified using evaluation strategies.

The following example uses the parList strategy to define a
parMap skeleton:

−− d e f i n i t i o n p a r a l l e l map u s i n g s t r a t e g i e s
parMap s t r f xs = map f xs ‘ us ing ‘ p a r L i s t s t r
−− usage
parMap r d e e p s e q f xs

3.2 F#
F# [31] combines the features of a strict, higher-order, impurely
functional language of an ML-style, with features of mainstream
object-oriented languages. Both paradigms are made available to
the programmer, who can make a choice based on the suitability
of the paradigm for the application and on his familiarity with the
paradigm. The F# implementation compiles to .NET as the VM
and can therefore build on highly-optimised VM implementations,
and interact with libraries in other languages also targeting this
intermediate platform.

F# has good support for concurrency through asynchronous
workflows and message passing, and parallelism through the Task
Parallel Library. It allows combining these libraries to take advan-
tage of potential parallelism in an application.



3.2.1 Concurrency Features
Asynchronous workflows are intended for writing concurrent and
reactive programs that perform asynchronous I/O where avoiding
threads to block is necessary. It can however be used for basic
parallelisation. It works by wrapping a section of code inside an
async block which can be run independently without blocking
the main thread. For example, a web server can handle requests
simultaneously. On a parallel machine, these requests are executed
in parallel thus improving the performance.

l e t handleRq rq = async { (∗ some code h e r e ∗ ) }
Async . RunSynchronous ly ( handleRq r e q u e s t )

Building on the asynchronous infrastructure, the MailboxPro-
cessor type encapsulates an agent-based concurrency implementa-
tion similar to that in Erlang [2]. In this model, agents run in parallel
and communicate by sending messages to each other. The absence
of shared mutable state makes applications scale and simplifies the
understanding. Though requiring a quite different application struc-
ture, common patterns can be used to implement agent-based ap-
plications.

3.2.2 Task Parallel Library
The Task Parallel Library [4, 14] provides an API to simplify the
process of adding parallelism to the application. TPL handles many
of low-level details such as partitioning of work, scheduling of
threads on the threadpool and scaling the degree of concurrency
dynamically to exploit all available processors in the most efficient
way.

From the programmer’s viewpoint, there is no explicit notion of
threads. The main construct for task parallelism is built around the
concept of a task which represents an independent unit of work that
is executed in parallel. Tasks are queued to the threadpool which
employs work-stealing to balance the load. The number of threads
are adjusted during runtime based on the workload and available
processors. As several tasks can be mapped to a single thread, this
make them relatively lightweight. Tasks can be controlled via a
number of built-in methods. The code sample below creates a task
to process each item in the sequence concurrently and synchronise
at the end.

l e t t a s k s t s =
[ | f o r t in t s

Task . F a c t o r y . S ta r tNew ( fun ( ) −>
p r o c e s s t ) | ]

Task . Wai tA l l t a s k s

Data parallelism is supported through the Parallel class and
PLINQ. The Parallel class implements static methods such as Paral-
lel.For and Parallel.ForEach for basic loops parallelisation. These
methods provide an easy way of parallelising for loops. PLINQ
offers a more declarative model for data parallelism based on Lan-
guage Integrated Query. It provides a shallow embedding of an
SQL-like query language directly in the general purpose, host lan-
guage (in this case F#) and allows to query XML data, databases
or objects from standard data collections. The latter is how we use
PLINQ. The implementation uses TPL internally for efficient im-
plementation, and is the highest level language mechanism for par-
allelism in F#.

3.3 Scala
Scala is a statically typed, strict, and multi-paradigm programming
language, combining functional and object-oriented features [22].
The language allows the expression of common programming pat-
terns in a concise, elegant and type-safe manner. Scala’s compiler
targets the Java Virtual Machine (JVM) platform and thus is fully
interoperable with Java, empowering the programmer with the full

range of Java libraries and frameworks. The language was also de-
signed with extensibility in mind, meaning that new features can be
easily added in the form of new libraries without the need to change
the syntax of the language.

A main focus of Scala is to deliver state-of-the-art high-level
constructs and abstractions for concurrent programming, empha-
sising large-scale distribution, scalability and fault-tolerance. To-
wards this goal it provides a number of programming frameworks,
most notably Scala Actors [11] for concurrency and Scala Parallel
Collections [25] for implicit parallelism.

3.3.1 Scala Actors Library
Scala supports concurrency by providing an explicit message pass-
ing programming model based on actors. Actors are first-class,
light-weight processes that communicate with each other by ex-
changing asynchronous messages [1]. These messages are gathered
in the receiving actor’s mailbox. An actor is able to iterate through
its mailbox and respond to the various messages it has gathered by
using pattern matching, a staple approach in functional program-
ming. Responses to messages include among other actions: creat-
ing a new actor; sending a new message to the sender; and changing
the underlying behaviour of the receiving actor. This design is mo-
tivated by Erlang [2].

a ! msg / / a c t o r s e n d i n g a message

/ / r e c e i v i n g msgs and r e s p o n d i n g w i t h a c t i o n s
r e c e i v e {

case m s g p a t t e r n 1 => a c t i o n 1
case m s g p a t t e r n 2 => a c t i o n 2
case m s g p a t t e r n n => a c t i o n n

}

3.3.2 Scala Parallel Collections Framework
The Scala Parallel Collections Framework provides the parallel
collections subpackage, which defines parallel implementations for
sequences, maps and sets, together with common parallel opera-
tions [25]. The programmer can use the method par on a sequen-
tial collection to invoke its corresponding parallel implementation.
With the method seq the parallel collection behaves again in a se-
quential manner. The benefit of this approach is that parallel oper-
ations can have the same names as their sequential versions, which
means that the programmer can easily introduce parallelism by just
providing the method par in the right places, as shown below.

xs . map ( ( x : I n t ) => x + 1 ) / / s e q u e n t i a l

xs . p a r . map ( ( x : I n t ) => x + 1 ) . seq / / p a r a l l e l

The implementation of the parallel collections library is built on
top of the Java Fork/Join framework [13]. This is basically a thread
pool implementation that aims to efficiently schedule fork/join
tasks among available processors. Inspired by divide-and-conquer
and recursive approaches to parallelism, a fork/join task can spawn
(fork) new tasks and wait for them to finish (join) before progress-
ing with the execution. Currently the fork/join implementation uses
two core techniques, adaptive work stealing [8, 13] and exponential
task splitting [8], in order to efficiently control the task granular-
ity. Although the programmer does not have much control over the
level of parallelism provided by the framework, the implementation
has been carefully tuned to ensure a high parallel performance.

3.4 Summary
In summary, the following table compares and contrasts the key
features of each of the three languages and their parallelism support
listed in order of their level of abstraction.



Key Features Parallelism Support

Haskell functional, Skeleton: parMap
lazy evaluation, Strategies: parList
static/inferred typing Semi-Exp: par, pseq

Explicit: IO threads
F# functional, imperative, Skeleton: pmap

object oriented, Semi-Exp: PLINQ,For
strict evaluation, Async workflows
static/inferred typing, Explicit: tasks
.NET interoperability

Scala functional, imperative, Skeleton: pmap
object oriented, Semi-Exp: Par Coll
strict evaluation, Explicit: Actors
static/inferred typing,
Java interoperability

Haskell F# Scala

Skeletons parMap pmap pmap
Strat: parList

Semi-explicit par, pseq PLINQ, ParFor Par Coll
Async Wkf

Explicit threads tasks Actors

Haskell is designed as a purely functional language and there-
fore does not include features for object-oriented and imperative
programming. However, it does support foreign language integra-
tion e.g. C through the FFI library, which can perform unsafe oper-
ations inside the IO monad. F# is mostly functional but its design
aims at integration with other paradigms from the offset. Scala is
mainly influenced by Java and so many of the language concepts
are tied to objects. However, it does provide fairly good functional
support, though the syntax differs from more traditional functional
languages a bit.

All three languages provide advanced type systems with au-
tomatic type inference and support high-level approaches for
multi-core parallelism. Platform-wise, Haskell has its own graph-
reduction-based runtime-system (STGM), F# compiles down to
.NET Common Intermediate Language (CIL) and then runs on the
Common Language Runtime (CLR), and Scala compiles to Java
Byte Code and runs on the Java Virtual Machine (JVM).

In terms of data structures, the most commonly used in all lan-
guages are lists, which are lazy by default in Haskell and strict in
the other two languages, and mutable arrays. F# also has sequences,
in which evaluation is demand-driven, and LazyList from the Pow-
erPack, which is similar to Haskell lists. LazyList uses caching and
allows pattern matching unlike sequences.

4. Implementation
In this section, we provide (parallel) implementations for the n-
body problem in Haskell, F# and Scala. A detailed discussion of
the Haskell implementation is provided in [32]. We produced the
F# and Scala versions based on this implementation. We compare
the implementations in terms of performance and programmability.

4.1 N-Body Problem
The n-body problem is a common problem in many areas of sci-
ence. It involves predicting and simulating the motion of a system
of N bodies that interact with each other gravitationally. The simu-
lation proceeds over a number of time steps, where the gravitational
forces applied by each body to the others are calculated and then

used to update the velocities and positions of the bodies in the sys-
tem in each iteration.

Figure 1. Points in a 3D Barnes-Hut n-body simulation are con-
tained in a region (bounding box) which is sub-divided recursively
into smaller regions.

The body-to-body force calculation is a naive method and is not
feasible for large number of bodies. Hierarchical force-calculation
algorithms, such as the Barnes-Hut [3, 23] algorithm provide, an
efficient approximation solution. The core of the algorithm consists
of two phases: (1) tree construction — an octree is constructed
from the list of bodies (see Figure 1); and (2) force calculation
— the acceleration due to each body is computed by traversing
the tree and approximating bodies that are too far away by using
the centre of mass of nearby bodies. The second phase is the
most compute-intensive phase. Opportunities for parallelism exist
at the tree construction and acceleration calculation stage. The tree
construction phase, however, accounts for only a small percentage
of the overall time. Therefore we focus on parallelising the force
calculation phase, which can be done independently for each body
once the tree is constructed. The following is the algorithm for the
Barnes-Hut n-body simulation:

f u n c t i o n doStep ( bs , n )
i f ( n ==0) re turn bs
e l s e

/ / f i n d t h e bounding box o f t h e b o d i e s
bbox = f indBounds bs
/ / b u i l d t h e BH t r e e ( a l s o c a l c u l a t e c e n t r e

o f mass o f each r e g i o n )
t r e e = b u i l d T r e e ( bbox , bs )
/ / u se t r e e t o up da t e v e l o c i t i e s and

p o s i t i o n s
f o r e a c h b i n bs

a c c e l = c a l c A c c e l b t r e e
/ / d e d u c t a c c e l e r a t i o n from v e l o c i t y o f

body b
b = u p d a t e V e l b a c c e l
/ / move body b
b = u p d a t e P o s b

doStep ( bs , n−1)

The calcAccel function calculates the acceleration of a given
body against the others by traversing the octree. It is the main
source of parallelism and can be performed independently for each
body.

4.2 Sequential Implementations and Optimisations
The first step in writing parallel code is to come up with an efficient
sequential implementation. However, in doing so opportunities for



parallelism should be preserved. Using mutable state to get the best
sequential performance destroys most opportunities for parallelism.
Instead, keeping the implementation pure eases the parallelisation
step. In our case, the sequential Barnes-Hut algorithm is initially
implemented in all three languages. The chosen data structure is
list, as it is the most commonly used in functional languages. Next,
we try to improve the sequential implementation by applying a
number of generic and language specific optimisations.

4.2.1 Generic Optimisations
A number of general optimisation techniques applies to all three
languages. We assess their impact on performance in Section 5.
These optimisation techniques are:

Deforestation is used as an instance of (manual) program trans-
formation. For example, elimination of multiple traversals of
data structures can improve sequential runtimes by doing fu-
sion, such as merging fold and map, and using function com-
position with a single map operation instead of two consecutive
maps on the same list e.g. map (f . g) xs in Haskell; f <<
g in F#; and f andThen g in Scala. Some of these transforma-
tions are done automatically, e.g. by GHC, with full optimisa-
tion enabled.

Tail-call elimination ensures constant stack usage by making sure
that recursive functions return an accumulated value in their last
call without any further evaluation. This can be often achieved
by using the right built-in functions in the language e.g. foldl
instead of foldr. The former is tail recursive and uses an
accumulator which is returned in the last call.

Compiler optimisations can be enabled selectively to perform au-
tomatic source-to-source transformations, typically on interme-
diate language code. Notably, the F# and Scala compilers do
most optimisations without having to specify any flag (enabled
by default), whereas the GHC Haskell compiler allows selec-
tive enabling of optimisations and provides several optimisation
levels.

4.2.2 Haskell
We start with an initial sequential implementation of the Barnes-
Hut algorithm in Haskell, where the expressiveness of the language
helps to easily translate the advanced algorithm into functional
code. Initially, the program is not well optimised and is unable to
execute on a large number of input due to stack overflow. Several
iterations of optimisation are required in order to produce an effi-
cient sequential version (reported in [32]). These optimisations are:

Strictness annotation: Often it is not necessary to delay evalua-
tion of values to avoid unnecessary thunking of computations.
Forcing evaluation in Haskell is done using the pseq primitive,
the strict application function ($!) or simply the exclamation
mark (!) from BangPatterns extension. These annotations are
typically placed in data type definitions, to effect every usage
of such data. All data types are defined with strict data fields
consequently reducing the heap consumption and runtime. Ad-
ditionally, the UNPACK pragma is used to refer to the values di-
rectly instead of pointers, thus removing one level of indirection
and reducing memory consumption.

foldr/build: Another important optimisation in Haskell is fol-
dr/build short cut fusion. This eliminates the intermediate data
structures produced by a build followed by a foldr. The com-
piler can spot this specific sequence and automatically fuse the
code.

4.2.3 F#
The F# version is a direct translation of the Haskell code and the
changes are mainly syntactic. In contrast to Haskell’s lazy list, we
use the default strict list in F#. Other versions using sequence and
array are implemented and the results are given in the next section.

F# does not require any optimisations related to laziness as
the language is strict by default. After translation from Haskell,
the main optimisation involves manually merging fold/map in F#,
which is done automatically by using short cut fusion in Haskell.
As an example, the operation done in the map is moved into the
lambda function of fold.

L i s t . f o l d g acc ( L i s t . map ( fun x −> f x ) xs )
−− becomes
L i s t . f o l d ( fun s t a t e x −> g s t a t e ( f x ) ) acc xs

Inlining functions is another way of improving performance.
The inline annotation indicates that a function definition should
be embedded into any code which uses it.

4.2.4 Scala
The Scala version is largely based on the Haskell and the F#
implementations and the main differences are in the syntax. This
involves wrapping functions inside classes or singleton objects. The
two main sequential optimisations are:

Tail recursion optimisation: This generic optimisation technique
seems to play a significant role towards achieving good per-
formance in Scala. Tail calls are not natively supported in the
JVM, as opposed to .NET, which explains why such a source
code transformation is more important than in F#. Although
some tail-call optimisation was recently introduced to the Scala
compiler, it is still quite basic and only able to convert simple
recursive functions into loops, not complicated ones as used in
the Barnes-Hut algorithm.

Unnecessary object initialisations removal: Object allocation in
Scala is very light-weight, something which is very important as
objects are an integral part of the language. Object initialisation,
though, causes some additional performance overhead espe-
cially when used inside heavy numerical computations such as
in the recursive calcAccel function, which is the main worker
function in the Barnes-Hut code.

4.3 Parallel Implementations and Tuning
The main source of parallelism is the acceleration calculation as
confirmed by a high percentage of time spent in this step by time
profiling the program. The tree construction stage is insignificant
in terms of the overall percentage of time spent in it. Thus, we
focus our efforts in parallelising the top level map function that
uses the constructed tree and computes the acceleration for each
body in the list. The computation of acceleration for each body is
independent of the other bodies, which means no synchronisation
locks are required.

4.3.1 Haskell
The strategies library provides a parallel map implementation
parMap, which is implemented using parList, a higher-order,
composable strategy that applies a given evaluation degree to each
element in the list in parallel. parMap is the starting point to intro-
duce data parallelism in the code. Usually it will give good parallel
performance if the list to which it is applied is not too big and the
function applied to each list element does enough work to cover the
overhead of creating a spark for each list item. With a large input
size, parMap is inefficient as a spark is generated for each element
in the list structure resulting in more overhead than actual benefit
of parallelism especially if the work is too fine-grained.



It is usually not a problem to create many sparks in GpH as it
amounts to a pointer for each spark created only. However this may
lead to too fine-grained parallelism and poor performance.

Parallel tuning: The right balance of spark creation to match the
number of cores on the system is important to achieve good parallel
performance. If too many sparks are created, they might not end up
being taken for execution by the runtime-system; while too few of
them may result in under-exploitation of all processing units.

We use strategic chunking as a method to control the number
of sparks in Haskell. Two alternative versions of chunking, ex-
plicit chunking and clustering, are covered in more detail in [32].
Strategic chunking makes use of an existing higher-order strategy
from the library, which performs the chunking implicitly. This in-
volves using parListChunk instead of parList. The former takes
an additional chunksize parameter. parListChunk breaks the in-
put list into chunks of of the specified chunk size, which is typi-
cally calculated depending on the number of processor cores (us-
ing numCapabilities in GpH) and input size. This ensures that
the work is properly balanced among the processors. The two lines
of code below are all that is needed to make the parallel implemen-
tation scale.

c h u n k s i z e = ( l e n g t h bs ) ‘ quot ‘
( n u m C a p a b i l i t i e s ∗ 4)

new bs = map f bs
‘ us ing ‘ p a r L i s t C h u n k c h u n k s i z e r d e e p s e q

4.3.2 F#
We first use asynchronous workflow to implement a parallel map
in F#. By marking the function application to each element in
the list with the async keyword, we have a concurrent map,
with each function application not blocking each other. Adding
Async.Parallel to the pipeline enables the function applications
to run in parallel if multiple cores are used. Async.RunSynchronous
waits to synchronise at the end.

l e t pmap async f xs =
seq { f o r x in xs −> async { r e t u r n f x } }
|> Async . P a r a l l e l
|> Async . RunSynchronous ly
|> Seq . t o L i s t

While asynchronous workflow is a fairly easy way to introduce
parallelism and get initial speedup, it is also fairly intrusive and
changes the code structure. If the main source of parallelism can
be identified in one specific higher-order function, or skeleton, one
would typical use tasks from the TPL library for independent op-
erations. For instance, similar to the Haskell initial parMap imple-
mentation, where a spark is created for each list element, we try
creating a task for each list element using the task factory pattern
from TPL. This surely incurs overhead if the cost of creating a task
for an element is higher than the cost of processing (applying a
function to) the element.

l e t p m a p t p l t a s k s f ( xs : l i s t < >) =
l e t c r e a t e T a s k x = Task< >. F a c t o r y . S ta r tNew (

fun ( ) −> f x ) . R e s u l t
l e t t a s k s = xs |> L i s t . map c r e a t e T a s k
t a s k s

/ / chunk ing
l e t p m a p t p l t a s k s c h u n k f ( xs : l i s t < >) =

l e t chunks = chunksOf ( xs . Length / ( numProc ∗
2) ) xs

l e t chunkTask chunk = Task< >. F a c t o r y .
S ta r tNew ( fun ( ) −>
L i s t . map f chunk ) . R e s u l t

l e t t a s k s = L i s t . map chunkTask ( chunks |> Seq
. t o L i s t )

t a s k s |> L i s t . c o n c a t

The code segment above shows explicit task creation for each
list element in a naive parallel map implementation (comparable
to parMap in Haskell). The intention is to compare the overhead
of spark versus task creation in Haskell and F# respectively. As
we expected this does not give good performance. Thus we use a
chunking mechanism to try to limit the number of tasks created.
The results are discussed in Section 5.

Using tasks directly is not a good fit for our data-parallel prob-
lem. Many higher-level constructs are provided in TPL to achieve a
more declarative way of enabling data parallelism. These are typi-
cally implemented on top of tasks. PLINQ presents the best choice.
It hides the details of task creation and management in its imple-
mentation and provides a nice, familiar interface to easily express
parallel queries. For example, doing an operation on each element
in a list in parallel is enabled by simply marking the container
as parallel which hints to the underlying system that the latter is
to be processed in parallel i.e. converting it into a parallel query.
PLINQ uses TPL tasks in the background and handles load balanc-
ing across the cores implicitly, though it also offers some limited
control. In the PLINQ-style parallel map implementation, the Se-
lect actually performs a map operation on each element.

l e t pmap p l inq f ( xs : l i s t < >) =
xs . A s P a r a l l e l ( )

. S e l e c t ( fun x −> f x ) |> Seq . t o L i s t

Imperative style programming: The other main construct for
data parallelism is Parallel.For/ForEach. However, this does not
prove to be convenient with lists but is mostly useful with mutable
arrays, where the action inside the loop is to update elements in the
array. Implementing a different version of the algorithm that uses
arrays enables us to use Parallel.For to introduce parallelism and
thus to examine the effect of inplace update.

l e t p m a p t p l p a r f o r f ( xs : a r r a y < >) =
l e t new xs = Array . z e r o C r e a t e xs . Length
P a r a l l e l . For ( 0 , xs . Length , ( fun i −>

new xs . [ i ] <− f ( xs . [ i ] ) ) ) |> i g n o r e
new xs

Alternatively, there already exists a parallel map in the Ar-
ray.Parallel namespace which is a basic implementation and uses
Parallel.For behind the scene.

l e t r e s = Array . P a r a l l e l . map f a r r

Tuning: PLINQ and TPL provide some options for tuning, al-
though we find that the default settings are usually sufficient.

Maximum degree of parallelism: A thread pool is used to
schedule tasks and the number of threads can be controlled by using
maximum degree of parallelism. This configuration specifies the
maximum number of concurrently executing tasks.

Parallel.For and similar methods take an additional parameter
that specifies this parallel option. In PLINQ, the parameter AsPar-
allel().MaxDegreeOfParallelism can be set explicitly to the same
effect. Being an upper bound this parameter is used to restrict the
amount of parallelism at one time in the execution, but does not
ensure that the specified number is generated.

Chunking/Partitioning: We implement custom chunking to
control the granularity of tasks created explicitly as above — to
achieve similar effect as in Haskell.

There is also a Partitioner class with static methods to partition
collections. It supports partitioning with dynamic allocation, but
also range partitioning with static allocation. A partitioner can be
passed as argument to Parallel.For to specify a custom partitioning.
Therefore, it is best used with arrays as it gives the intervals for
each partitions.



4.3.3 Scala
Through the use of Parallel Collections in Scala, parallelisation is
semi-explicit by using the keyword par to call a parallel version of
the list, which implements parallel operations.

nbody . p a r . map ( ( b : Body ) => new Body ( b . mass ,
u p d a t e P o s ( b ) , u p d a t e V e l ( b ) ) ) . seq

The method par is applied on the list of bodies, which calls the
default parallel implementation of the list. When we subsequently
apply the map function on the parallel list, the parallel map function
is invoked on the list elements. In this way, it achieves a similar
separation of coordination and computation as parList in GpH.
Finally, we have to convert the result to a sequential list by applying
the method seq on the results.

Parallel Collections require only small changes to the code to
achieve initial speedup. The main disadvantage is that the frame-
work does not currently provide much control over the parallelism.
As an example, it is not possible to control how many threads are
spawned or to define the size of the underlying thread pool. Instead,
these details are handled by the underlying implementation, which
uses sophisticated work stealing and chunking techniques.

In a second approach, we implement parallel map skeletons us-
ing futures from the actors library. A future abstracts over send and
receive primitives and represents an object that is created to store a
result that has not yet been computed. The result is computed con-
currently at a later time and can be collected on demand. A parallel
map skeleton is implemented as follows:

d e f pmap [ T ] ( f : T => T ) ( xs : L i s t [ T ] ) : L i s t [ T ] = {
v a l t a s k s = xs . map ( ( x : T ) => F u t u r e s . f u t u r e { f

( x ) } )
t a s k s . map ( f u t u r e => f u t u r e . a p p l y ( ) )

}

In pmap a future is explicitly created for each element in the
given list, mapping the given function on the corresponding list
element. The results of the parallel map are then returned to the
user as the output of the skeleton.

The second skeleton we implement is a parallel map using
chunking to explicitly control the granularity of the parallelism,
directly corresponding to the initial Haskell implementation:

d e f chunk [ T ] ( xs : L i s t [ T ] , s i z e : I n t ) : L i s t [ L i s t [ T
] ] = xs . i sEmpty match {

case t rue => L i s t ( )
case f a l s e =>

v a l s p l i t = ( xs . t a k e ( s i z e ) , xs . d rop ( s i z e ) )
( s p l i t . 1 ) + : chunk ( s p l i t . 2 , s i z e )

}

d e f pmap chunk [ T ] ( f : T => T , s i z e : I n t ) ( xs :
L i s t [ T ] ) : L i s t [ T ] = {

v a l chunks = chunk ( xs , s i z e )
v a l t a s k c h u n k s = chunks . map ( ( c : L i s t [ T ] ) =>

F u t u r e s . f u t u r e { c . map ( ( x : T ) => f ( x ) ) } )
v a l t a s k s = t a s k c h u n k s . map ( f u t u r e => f u t u r e .

a p p l y ( ) )
t a s k s . f l a t t e n

}

5. Results
5.1 Experimental Setup
Platforms: All three languages are supported both on Linux and
Windows platforms either natively or through independent (open-
source) implementations. This provides ground for comparison of
the language implementations across the two platforms and for dis-
cussion of the results on each. Haskell’s GHC implementation is

cross-platform. GHC offers the option to compile code down to C
and run on a standard C compiler. F#’s official Microsoft imple-
mentation is intended to run on the .NET Framework on machines
running Windows. The open-source implementation of the runtime,
Mono, is available to compile and run F# code under Linux. Scala
runs on JVM, which has good support on both platforms. The fol-
lowing are the machines used for the experiments:

Linux Windows

Version CentOS 5.8 XP
Architecture 64-bit 32-bit

CPU Intel Xeon E5410 Intel Core i7 860
2.33GHz 2.80GHz

# cores 8 4 (8 HyperThreads)
RAM 7986 MB 3520 MB

Language Implementations: The following are the language im-
plementations used with the corresponding version numbers on
each platform:

Linux Windows

Haskell GHC 7.4.1 GHC 7.4.1
F# F# 2.0 / Mono 2.11.1 F# 2.0 / .NET 4.0
Scala Scala 2.10 / JVM 1.7 Scala 2.10 / JVM 1.7

Input: All measurements are taken using 80,000 bodies as the
input and the execution is based on 1 iteration of the n-body sim-
ulation. We focus on a single iteration to assess the potential for
parallelism in this application core for each language, rather than
viewing it as an application tuning exercise.

5.2 Baseline
We use the all-pairs implementations from the Computer Language
Shootout website1 as baseline for comparison. The implementa-
tions on the shootout webpage are highly-optimised by experts in
each language community. However, the implementations are im-
pure and they make heavy use of inplace updates and other unsafe
constructs provided in the languages in order to get the best per-
formance out of the implementation. This approach however se-
riously hampers parallelisation. Often the whole program would
have to change in order to parallelise it. Therefore, we do not take
these versions as starting points for our parallelisation. The original
shootout runtimes on a Linux x64 Intel Q6600 machine are taken
for 5 bodies and 50 million iterations. We take measurements on
our machines using 16000 bodies and 1 iteration only, and we ex-
clude the input generation and energy calculation times as we are
interested in the main iteration and parallelising it. The runtimes
are given in Table 1.

Table 1. Baseline (a) — language shootout results (all-pairs). The
numbers in brackets are slow-downs w.r.t. the Haskell version.

Linux (Original) Linux Windows
5 bodies, 50M iterations (16k bodies, 1 iteration)

Haskell 25.23 (1.00) 9.24 (1.00) 7.66 (1.00)
F# 41.36 (1.63) 9.37 (1.01) 4.88 (0.63)

Scala 23.47 (0.93) 5.51 (0.59) 14.25 (1.86)

Both the original runtimes and those taken on our Linux ma-
chine show that the Scala implementation is the fastest, followed by
Haskell, then F#. However, on the Windows platform, interestingly
the F# version, which was the slowest on Linux, performs best.

1 http://shootout.alioth.debian.org/

http://shootout.alioth.debian.org/


This highlights that the F# .NET implementation on that platform is
very well-tuned and Microsoft technologies, for compiler and vir-
tual machine, integrate well together. The Scala version shows the
opposite picture: it is the fastest version on Linux but the slowest
on Windows. Again, we expect that this is due to Linux being the
main target platform for this project. In contrast, Haskell exhibits
best sequential performance portability.

We also use our pure all-pairs implementations, which do not
use destructive updates, as a baseline. The results are shown in Ta-
ble 2. Haskell gives the best performance under Linux, and second
best under Windows, though closely followed by F# under the same
platform. Scala gives decent performance on both platforms. F# on
Linux is very slow, by a factor of 8.5 compared to Windows for the
pure baseline, as opposed to 1.9 for the impure baseline. We also
observe that, as expected, the pure implementations are slower than
the impure ones (in Tables 1) between 1.7 to 3.9 times. We inten-
tionally do not use impure features to make parallelisation safe and
easy.

Table 2. Baseline (b) — our pure all-pairs implementations (16k
bodies, 1 iteration). The numbers in brackets are slow-downs w.r.t.
the Haskell version.

Linux Windows

Haskell 20.77 (1.00) 15.55 (1.00)
F# 123.22 (5.93) 14.45 (0.92)

Scala 21.88 (1.05) 24.71 (1.58)

Comparing the runtimes from Tables 1 and 2, we can also
assess the sequential performance of our all-pairs implementations,
giving an estimate of the quality of our sequential code: 49.3%
for Haskell, 33.8% for F#, 57.5% in Scala. Avoiding any use of
impure features we lose some performance initially, but we gain
ample opportunities for parallelisation in exchange. Later in this
section we will show that selective usage of impure features after
parallelisation can further enhance performance. We believe that
efficiencies for the Barnes-Hut algorithm are similar, but in the
absence of similarly tuned sequential implementations we cannot
make a direct comparison for this algorithm.

In the following subsections, we see how these figures relate to
the pure Barnes-Hut implementations, where the algorithm is more
complex than the all-pairs, on the two platforms. The discussions
focus on 3 metrics: performance, programmability and pragmatic
aspects of the languages.

5.3 Performance Evaluation
Tables 4 and 5 summarise the runtimes and speedups in each lan-
guage on Linux and Windows respectively. As ancillary data, Ta-
ble 3 shows the peak memory usage under the Windows platform,
as observed by an external, OS-level task manager.

We use the same data structure, in this case list, across the
different implementations to have comparable results. The results
highlight a number of interesting points.

5.3.1 Sequential Performance
Tables 4 and 5 show that Haskell gives the best sequential perfor-
mance on both platforms. This has been made possible due to ex-
tensive sequential optimisations, using a range of techniques.

Most notably, the initial, naive Haskell version — without strict
data fields — gives a runtime of 479.94s. By using strict data fields
and UNPACK pragma, the runtime goes down to 33.02s, amounting
to a sequential speedup of 14.5. Enabling foldr/build optimisations
by code restructuring, as a GHC specific compiler optimisation,
gives a further 23% reduction in runtime to 25.28s. All results are
measured under Linux. The Haskell sequential runtime is better

than that of F# under Windows but, using lazy evaluation, it uses a
higher memory footprint than F# as shown in Table 3.

Table 3. Peak memory usage on a Windows machine

Haskell F# Scala

Sequential 57 MB 32 MB 58 MB
Parallel (4 cores) 71 MB 36 MB 62 MB

The F# version is a direct translation from Haskell with some
F# specific optimisations. Some optimisations native to Haskell
e.g. strictness annotations, are not required in F#. Other program
transformations, in particular merging fold and map operations,
thereby eliminating intermediate data structures, have to be done
manually in F# and this improves the runtime from 28.43 to 22.15s.
Inlining of functions reduces the runtime by 5% to 21.12s.

Another general observation is that the Mono implementation
of the .NET runtime, used under Linux, is not as well optimised
as the corresponding Microsoft .NET implementation, used under
Windows. Since the Mono project is now focusing on providing
a .NET infrastructure on embedded systems, rather than focusing
on high-performance computing, this is not surprising. However,
this is one of the first systematic comparisons of both platforms
for parallel computation. The difference in runtime is particularly
remarkable, since the hardware used for running the F#/Mono
instance was faster than the hardware for running F#/.NET.

The Scala version is the slowest one under Windows, but signif-
icantly better under Linux. This behaviour is consistent with the all-
pairs baseline results in Tables 1 and 2. We attribute this difference
mainly to the Scala compiler and the memory management over-
head imposed by it. It has been reported elsewhere [28] that Scala
makes heavy use of boxed types, resulting in a fairly high memory
footprint, as shown in Table 3 where the peak memory consumption
of the strict Scala implementation (58 MB) is even higher than the
lazy Haskell implementation (57 MB). On the Windows machine
the smaller amount of main memory will cause this high mem-
ory consumption to have a stronger impact on total runtime. Addi-
tionally, as a mixed paradigm language, Scala makes heavy use of
objects, resulting in initialisation overhead. Under Linux, the ini-
tial Scala implementation, without the optimisations described in
Section 4.2.4, gives a runtime of 55.44s. By using tail recursion
optimisation, the runtime goes down to 45.48s (-18%). Removing
unnecessary object instantiations helps to further improve the per-
formance to 39.04s (-14%).

Using Lazy Data Structures: All 3 languages support lazy data
structures and here we compare their sequential performance. As
reported above, the unoptimised Haskell version, with uncon-
strained lazy data structures loses a factor of 14.5 in runtime.

The LazyList version in F#, as a direct comparison with this ini-
tial Haskell version, exhibits an increase in sequential runtime from
118.12 to 604.19s (Linux), and from 21.12 to 81.68s (Windows),
representing a factor of 5 and 4, respectively. The memory usage
under Windows peaks at 115 MB (from 32 MB using the default
strict list). This suggests that this library is not well-optimised for
LazyList and fewer compiler optimisations, aiming at eliminating
unnecessary laziness are applied. It is worth noting that this struc-
ture, available as part of the PowerPack, is not officially supported
and is still under development.

Similarly, in Scala, the use of streams as lazy structures instead
of lists results in an increase in sequential runtime from 39.04 to
89.35s (Linux), and from 66.65 to 92.24s (Windows). The memory
usage under Windows peaks at 100 MB, which is a 72% increase
from the 58 MB using the default strict list.



Table 4. Runtimes (in seconds) on Linux (8 cores)

Haskell F# Scala

GpH AsyncWork TPL ParColl Actors

# cores parMap parMapChunk Tasks Tasks/chunk PLINQ pmap pmapchunk

seq 25.39 25.28 118.12 118.12 118.12 118.12 39.04 39.04 39.04
1 25.91 26.38 211.78 197.72 209.76 196.14 48.02 45.38 40.01
2 25.77 14.48 129.07 154.09 162.32 120.78 25.72 25.18 22.34
4 22.69 7.41 89.63 128.99 134.54 80.91 16.41 16.42 14.88
8 23.17 4.50 70.41 120.26 122.45 70.67 13.48 14.34 13.26

Table 5. Runtimes (in seconds) on Windows (4 cores plus hyperthreading)

Haskell F# Scala

GpH AsyncWork TPL ParColl Actors

# cores parMap parMapChunk Tasks Tasks/chunk PLINQ pmap pmapchunk

seq 17.64 17.64 21.12 21.12 21.12 21.12 66.65 66.65 66.65
1 17.77 18.05 21.26 23.31 21.10 21.39 66.96 68.30 67.24
2 17.61 9.41 16.96 26.47 21.36 17.32 57.96 58.63 58.66
4 16.94 6.80 10.18 36.06 21.50 10.56 34.48 33.64 33.84

8 (HT) 17.61 4.77 8.82 36.28 21.05 8.64 26.18 24.74 25.28

5.3.2 Parallel Performance
Figures 2(a) and 2(b) summarise the speedups obtained with the
best versions of each language implementation on Linux and Win-
dows, respectively. For F#, we use PLINQ speedups instead of
Async Workflow as the differences are small and we want to com-
pare parallel construct in the plots. Tables 4 and 5 elaborate on
the runtimes of several versions with the best parallel runtimes in
each language highlighted. Comparing the performance of the lan-
guages, Haskell displays the best speedups, up to 5.6 on 8 cores,
and remains scalable. This is achieved through strategic chunking
to improve thread granularity.

Since this is a data-parallel application, with limited scope for
thread-subsumption, such explicit granularity control is crucial,
as can be seen from the poor performance of the naive parMap
implementation, which generates a spark for each list element. In
terms of absolute parallel performance, the Haskell version is 3
times faster than the Scala version on an 8-core Linux machine,
and 1.5 times faster than F# on an 4-core Windows machine.

Due to the poor performance of Mono, for F# the Windows ver-
sion is the more interesting one. Here the implementation achieves
a respectable speedup of 2 on 4 cores, which increases to 2.4 when
using hyperthreading. Notably, the highest-level PLINQ implemen-
tation is the best performing on this platform, although speedup in
itself is not as good as in the Haskell version. Interestingly, the heap
consumption of F# is significantly lower, even with the unoptimised
version where it remains the same, than that of the Haskell version
(Table 3), but this does not translate into faster runtimes. We con-
jecture that this is mainly due to GHC performing more aggressive
optimisations than F#. We note that the task-based implementations
in effect result in a slow-down, mainly due to the high task man-
agement overhead, which is reduced when employing chunking. In
contrast to the GpH version, F# tasks are mandatory, so this over-
head is more pronounced than in GpH. The highest level PLINQ
implementation, best suited for data-parallelism gives almost as
good a result as the lower level asynchronous workflow implemen-
tation (-3.7% on 4 cores). Given the simplicity of the PLINQ code
(see Section 4.3) this is a strong argument in favour of this abstrac-
tion mechanism for data-parallel code.

For the Scala version we focus on the better performing Linux
version. All three parallel versions exhibit good speedups, although
trailing the Haskell results. In this implementation, chunking has a
far lower impact on performance compared to the Haskell version.
Together with the good 1 processor performance this indicates very
efficient task management for actor code in Scala. The highest level
parallel collection implementation is within 1.7% of the 8-core per-
formance, almost as good as a tuned actor implementation. The
parallel performance of the pure version tails out for higher core
counts, with an 8-core speedup of 2.9 using the Parallel Collec-
tions, but the impure implementation, discussed below, achieves a
speedup of 4.5. This simplest version achieves almost as good a
performance as the lower-level actor-based implementations.

Mutable Data Structures: The remaining results use impure lan-
guage features, in particular mutable data structures, to further im-
prove performance. The use of arrays in F#, which update the body
inplace, gives only a small performance gain under Windows, a
1.7% decrease in sequential runtime from 21.12s to 20.76s (Ta-
ble 6). Interestingly, the memory usage is the same as for the list
version. This might be due to the imprecision of using an exter-
nal, OS-level tool to determine peak usage, as opposed to maxi-
mum residency. Under Linux, where the sequential runtime is al-
ready slower by a high factor, arrays give a 19% improvement from
118.12 to 95.33s in runtime. The main advantage of using arrays
in this context, though, is as mentioned earlier: we can use the
built-in parallel map from the Array.Parallel module and the Par-
allel.For with the default or custom partitioning. The default par-
titioner, which creates partitions based on the processor count and
input size, exhibits very good parallel performance that does not
improve significantly with a custom partitioner (Table 6), leading
us to say that the default tuning performed is very efficient.

We also developed an impure functional implementation in
Scala using inplace updates. In this case, the maximum residency
drops from 114.75 MB to 91.72 MB (20% reduction) on the Linux
platform, as obtained by internal, JVM-level monitoring. This di-
rectly translates into faster sequential and parallel runtimes than
the pure versions under Linux (see Table 7). In Scala this differ-
ence is quite remarkable, improving speedup to 4.51 (on 8 cores),
as opposed to 2.9 in the pure version (Figure 2(a)). This improve-



(a) Linux (8 cores) (b) Windows (4 cores)

Figure 2. Absolute speedups on the two platforms for the best versions in all languages and impure versions in F# and Scala.

ment in parallel speedup is most likely due to the reduction in heap
contention on this shared memory architecture, in this more mem-
ory efficient version. The impure Scala implementation also gains
significantly better sequential performance on the Windows plat-
form: 47.86s (28% runtime reduction from the pure Scala imple-
mentation) and a 4–cores parallel runtime of 20.78s (39% runtime
reduction and 14% speedup improvement from the parallel pure
implementation using pmap chunk).

Table 6. F# runtime results (in seconds) using arrays on Windows
(4 cores plus hyperthreading).

Best Pure Array.Par.map Parallel.For

# cores default partitioner

seq 21.12 20.76 20.76 20.76
1 21.39 21.56 21.2 21.35
2 17.32 15.83 15.66 16.05
4 10.56 9.09 9.09 9.32
8 8.64 7.33 7.33 7.15

Table 7. Runtime results (in seconds) for the impure Scala imple-
mentation on Linux (8 cores).

# cores Best Pure ParColl pmap pmapchunk

seq 39.04 32.81 32.81 32.81
1 40.01 36.92 34.86 36.09
2 22.34 17.66 22.05 19.14
4 14.88 11.23 12.55 10.96
8 13.26 8.47 8.57 7.27

5.4 Programmability
Due to the high-level nature of all three languages, introducing par-
allelism to a pure version is easy and often amounts only to using
a suitable data-parallel skeleton, e.g. parMap instead of a map in
the computational core of the application. Implementing the im-
pure versions, we start from a pure version to introduce parallelism
and then add inplace updates selectively in such a way that does not
require locks as the operations are independent. In the Haskell ver-
sion we use evaluation strategies, which separate the parallel code
from the main computation logic. In another paper [32] we compare

this implementation with alternatives for introducing parallelism
in Haskell, in particular with Eden [16] and the ParMonad [18],
achieving similar performance. In direct comparison, a first parallel
version is more easily achieved in Haskell but for optimal perfor-
mance some parallel performance tuning is needed. In particular,
the naive parMap does not work well in this example, because its
implementation does not automatically introduce chunks, and for
competitive performance the parMapChunk variant is needed. One
strength of Haskell is the modularity in expressing coordination
code, which makes it easy to implement customised chunking as
discussed in [32]. Haskell provides the least intrusive mechanism
for parallelisation. Introducing parallelism with chunking amounts
to two additional lines of code. It is also easy to separate issues
such as chunking by composing higher-order strategies, for exam-
ple, using a clustering strategy.

F# supports several paradigms of parallel programming at dif-
ferent levels of abstraction, helping the programmers to make the
transition from sequential to parallel programming. The preferred
mechanism for data-parallelism is to use the SQL-like PLINQ lan-
guage, which represents the highest level of abstraction, and still
gives close to optimal performance. This is an advantage of using
F# for data-parallel applications that fit the PLINQ abstractions.

Scala offers parallelism support through two libraries. On a
data structure level, parallelism is very easily introduced through
the keyword par, which calls a parallel version of a collection
causing most subsequent functions applied on it to be executed
in parallel. The lower-level actors message passing model offers
explicit messaging between actors, but also allows to build higher-
level solutions on top of futures for introducing parallelism.

Optimisations are important for good performance but must be
chosen carefully to avoid sequentialisation. The Haskell version re-
quires some modification to the laziness of the code in order to im-
prove sequential performance. In F# and Scala, some optimisations
are necessary and easily introduced with the functional style e.g.
ensuring recursive functions make tail-calls and avoiding multiple
traversals of data structures using function composition in the func-
tion argument to a map. Several of these (manual) optimisations are
performed automatically by GHC for the Haskell version.

Other language features such as purity in each language help to
structure the program in a modular way, gaining separation between
the main components of the code. For instance, the main n-body
code is written in a purely functional way, which makes it easy to
reason about the program, offers robustness and modularity, and



efficiently integrates with the world, for example through the main
function that generates the input and prints the output.

Both F# and Scala allow integration of object-oriented features
with functional programming. Although, we tried to integrate some
of the available object-oriented features (e.g. classes) in our F# and
Scala implementations, we did not notice any difference in the se-
quential or parallel performance. That makes intuitive sense be-
cause object-orientation is mainly used to help towards large-scale
software development, by using features such as polymorphism, in-
heritance and encapsulation. In this small high performance com-
puting application, though, we found that we did not really require
these features to achieve good performance.

One of the main difficulties in using Haskell for high perfor-
mance computing is to understand the implications of laziness. It
is hard to predict when expressions are evaluated, and to estimate
how much work is involved. Evaluation strategies provide a power-
ful mechanism to control evaluation order and degree where needed
in order to achieve efficient parallelism. However, laziness allows
us to make use of infinite data structures. F# and Scala on the other
hand have strict evaluation by default. This makes it easier to pre-
dict the performance of the program.

Summarising these programmability aspects, we can provide
the following guidance on choosing a language. F# with the PLINQ
abstraction is particularly suitable for flat, data-parallelism and it is
easy to use for programmers fluent in SQL-style database queries.
GpH provides the least intrusive programming model, and is there-
fore a good choice when aiming to minimise code changes when
parallelising an application. GpH and to a lesser extent F# provide
rich abstraction hierarchies, that allow the programmer to pick con-
structs with a suitable degree of control for the application. In di-
rect comparison of these two languages, GpH emphasises a purely
declarative model, whereas F# provides more direct control of exe-
cution on a lower level. Finally, in terms of the underlying operating
system, Haskell is a viable choice on both platforms, exhibiting best
sequential performance portability. The same cannot be said for the
other two languages: F# works best on Windows, while Scala is
best tuned on Linux.

5.5 Pragmatics
Haskell comes with powerful tool support which is helpful in op-
timising both sequential and parallel algorithms. As an example,
time and heap allocation profiling reports, both textual and visual,
are useful in identifying the hot-spot of the execution and poten-
tial space leaks. Threadscope is a parallel visualisation tool partic-
ularly useful to see work distribution across the number of cores.
Although F# comes with very good tool support, such as a pro-
filer, unfortunately it is only available on the ultimate version of
Microsoft’s Visual Studio. Due to the lack of these tools, it was
difficult for us to find out why the same code in Haskell performs
badly in F#. Free tools are difficult to find, as most third party op-
tions are commercial. Scala is based on the JVM and, thus, enjoys
a wide range of both monitoring and analysis tools, such as Visu-
alVM, which we used as a JVM-level monitor.

From a pragmatic point of view the rich tool support through Vi-
sualStudio and its apparent backing by Microsoft make it a very at-
tractive language in particular for programmers previously unaware
of functional programming. There is a tendency in its implementa-
tion to hide details of the parallel execution from the programmer,
though. While this encourages a high level of abstraction, best sup-
ported through data-parallel PLINQ, it also complicates the tuning
of the program for the expert parallel programmer.

6. Conclusion
In this paper we compare parallel implementations of the Barnes-
Hut algorithm for solving the n-body problem, implemented in

the purely functional language Haskell and in the modern multi-
paradigm languages F# and Scala. We assess both programmabil-
ity and parallel performance, when executing on state-of-the-art
multicore machines. We use a number of alternative parallel pro-
gramming constructs provided in each language, in particular GpH
in Haskell, Asynchronous Workflows and TPL in F#, and Parallel
Collections and Actors in Scala.

The type of parallelism in this application is data-oriented and
to this end, we implemented a number of parallel map skeletons
in F# and similarly in Scala. We achieve speedups up to 5.62 in
Haskell (8 cores), 2.28 in F# (4 cores) and 4.51 in Scala (8 cores).

With a caveat that our observations are based on parallel variants
of only one application, we draw the following conclusions:

• Across all languages, the version using the highest abstraction
level also produced the (near) best runtimes.
• Providing first-class parallelism support in the language, through

primitives rather than annotations or libraries, is important in
the Haskell version in order to explicitly tune thread granularity,
e.g. using higher-order functions in a chunking parMap.
• Careful (sequential) optimisation of the lazy Haskell version

results in sequential performance, surpassing that of the strict
F# and Scala versions.
• Aggressive, sequential code optimisations, using impure lan-

guage features early on, seriously hamper the parallelisation of
the code, as can be seen from the (sequential) implementations
on the language shootout page, which are a poor starting point
for parallelisation due to enforced sequentialisation on mutable
data structures. However, selective use of impure features at the
end of the parallelisation process can gain notable additional
performance, demonstrated, e.g. in the Scala implementation.
• The poor performance of F# on Linux, due to a fairly low-

performance .NET implementation provided by Mono, does
not make F# a viable choice for parallelism on Linux at the
moment.
• The additional expressive power provided by lower-level actor-

based code in Scala does not manage to improve performance
significantly and therefore the extra programming effort is not
justified in this version.

In comparison to other mainstream parallel languages, we found
that all languages provide fairly high-level constructs for paral-
lelism but the degree of control provided in them differs. For in-
stance, Haskell allows initial parallelism to be easily specified, as
parallel versions of well-known higher-order functions. Since par-
allelism is provided through primitives, rather than annotations or
libraries, the full power of the language is available, facilitating
user-customisable chunking to tune parallel performance. On the
other hand, F# and Scala confine most control of parallelism inside
the runtime-system implementation, aiming for automatic manage-
ment without any programmer input. Therefore tuning parallelism
is more difficult for the expert parallel programmer in these lan-
guages.

Finally, we remark that all 3 languages provide easy-to-use,
high-level and efficient support for parallelism. Haskell has an
edge in its rich libraries and aggressive optimisation. Through
laziness, top-level parallelism can be specified in a more modular
way, minimising the need to modify components and avoiding any
notion of explicit threads. Thus, Haskell is the language of choice
for minimally intrusive parallelism. F# and Scala provide several
mechanisms for parallelisation, some as high level as Haskell’s,
some lower level with more potential for performance tuning. Thus,
these languages provide a more direct route to controlling low level
aspects and can use object-oriented and impure language features.



An online version of this paper, together with the source code of all
parallel versions, is available at: http://www.macs.hw.ac.uk/
~dsg/gph/papers/abstracts/fhpc12.html.
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